咨询与建议

限定检索结果

文献类型

  • 34 篇 期刊文献
  • 10 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 45 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 35 篇 工学
    • 21 篇 计算机科学与技术...
    • 10 篇 控制科学与工程
    • 9 篇 电气工程
    • 4 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 信息与通信工程
  • 18 篇 理学
    • 12 篇 数学
    • 5 篇 统计学(可授理学、...
    • 2 篇 物理学
  • 10 篇 管理学
    • 9 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 公共管理
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 3 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 公共卫生与预防医...

主题

  • 45 篇 stochastic gradi...
  • 5 篇 distributed opti...
  • 5 篇 optimization
  • 4 篇 kernel methods
  • 4 篇 convergence
  • 3 篇 linear programmi...
  • 3 篇 stochastic proce...
  • 2 篇 transient analys...
  • 2 篇 min-max optimiza...
  • 2 篇 latent sentiment...
  • 2 篇 gradient trackin...
  • 2 篇 network influenc...
  • 2 篇 factor models
  • 2 篇 regularized algo...
  • 2 篇 constrained stoc...
  • 2 篇 gradient methods
  • 2 篇 ritz-like values
  • 2 篇 online validatio...
  • 2 篇 machine learning
  • 2 篇 signal processin...

机构

  • 4 篇 univ ferrara dep...
  • 2 篇 princeton univ d...
  • 2 篇 center for data ...
  • 2 篇 zhejiang univ ct...
  • 2 篇 ecole polytech f...
  • 2 篇 stanford univ st...
  • 2 篇 laboratory for i...
  • 2 篇 univ modena & re...
  • 1 篇 norwegian univ s...
  • 1 篇 clemson univ dep...
  • 1 篇 univ warwick dep...
  • 1 篇 sciences technol...
  • 1 篇 department of el...
  • 1 篇 beijing huahang ...
  • 1 篇 univ miami dept ...
  • 1 篇 department of co...
  • 1 篇 shenzhen inst ar...
  • 1 篇 essec business s...
  • 1 篇 politecn torino ...
  • 1 篇 tufts univ elect...

作者

  • 4 篇 franchini giorgi...
  • 4 篇 ruggiero valeria
  • 3 篇 zanni luca
  • 2 篇 tian kevin
  • 2 篇 xin ran
  • 2 篇 junhong lin
  • 2 篇 cevher volkan
  • 2 篇 lin junhong
  • 2 篇 trombini ilaria
  • 2 篇 sidford aaron
  • 2 篇 kar soummya
  • 2 篇 volkan cevher
  • 2 篇 khan usman a.
  • 2 篇 pu shi
  • 2 篇 huang kun
  • 1 篇 kalogerias diony...
  • 1 篇 giles michael b.
  • 1 篇 rottmayer jan
  • 1 篇 vulcano gustavo
  • 1 篇 archetti f

语言

  • 43 篇 英文
  • 2 篇 其他
检索条件"主题词=stochastic gradient methods"
45 条 记 录,以下是1-10 订阅
排序:
Optimal Convergence for Distributed Learning with stochastic gradient methods and Spectral Algorithms
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-63页
作者: Lin, Junhong Cevher, Volkan Zhejiang Univ Ctr Data Sci Hangzhou 310027 Peoples R China Ecole Polytech Fed Lausanne Lab Informat & Inference Syst CH-1015 Lausanne Switzerland
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM... 详细信息
来源: 评论
Convergences of Regularized Algorithms and stochastic gradient methods with Random Projections
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-44页
作者: Lin, Junhong Cevher, Volkan Zhejiang Univ Ctr Data Sci Hangzhou 310027 Peoples R China Ecole Polytech Fed Lausanne Lab Informat & Inference Syst CH-1015 Lausanne Switzerland
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a... 详细信息
来源: 评论
Ritz-like values in steplength selections for stochastic gradient methods
收藏 引用
SOFT COMPUTING 2020年 第23期24卷 17573-17588页
作者: Franchini, Giorgia Ruggiero, Valeria Zanni, Luca Univ Modena & Reggio Emilia Dept Phys Informat & Math Modena Italy Univ Ferrara Dept Math & Comp Sci Ferrara Italy
The steplength selection is a crucial issue for the effectiveness of the stochastic gradient methods for large-scale optimization problems arising in machine learning. In a recent paper, Bollapragada et al. (SIAM J Op... 详细信息
来源: 评论
Thresholding Procedure via Barzilai-Borwein Rules for the Steplength Selection in stochastic gradient methods  7th
Thresholding Procedure via Barzilai-Borwein Rules for the St...
收藏 引用
7th International Conference on Machine Learning, Optimization, and Data Science (LOD) / 1st Symposium on Artificial Intelligence and Neuroscience (ACAIN)
作者: Franchini, Giorgia Ruggiero, Valeria Trombini, Ilaria Univ Ferrara Dept Math & Comp Sci Ferrara Italy
A crucial aspect in designing a learning algorithm is the selection of the hyperparameters (parameters that are not trained during the learning process). In particular the effectiveness of the stochastic gradient meth... 详细信息
来源: 评论
On the Steplength Selection in stochastic gradient methods  3rd
On the Steplength Selection in Stochastic Gradient Methods
收藏 引用
3rd International Conference on Numerical Computations - Theory and Algorithms (NUMTA)
作者: Franchini, Giorgia Ruggiero, Valeria Zanni, Luca Univ Modena & Reggio Emilia Dept Phys Informat & Math Modena Italy Univ Ferrara Dept Math & Comp Sci Ferrara Italy INdAM Res Grp GNCS Rome Italy
This paper deals with the steplength selection in stochastic gradient methods for large scale optimization problems arising in machine learning. We introduce an adaptive steplength selection derived by tailoring a lim... 详细信息
来源: 评论
Optimization of complex simulation models with stochastic gradient methods  16
Optimization of complex simulation models with stochastic gr...
收藏 引用
International Conference on High Performance Computing & Simulation (HPCS)
作者: Gaivoronski, Alexei A. Norwegian Univ Sci & Technol Dept Ind Econ & Technol Management Trondheim Norway
We describe the structure of stochastic optimization solver SQG (stochastic Quasigradient), which implements stochastic gradient methods for optimization of complex stochastic simulation models. The solver finds the e... 详细信息
来源: 评论
Stability and Differential Privacy of stochastic gradient methods
Stability and Differential Privacy of Stochastic Gradient Me...
收藏 引用
作者: Yang, Zhenhuan State University of New York at Albany
学位级别:Ph.D., Doctor of Philosophy
Recently there are a considerable amount of work devoted to the study of the algorithmic stability as well as differential privacy (DP) for stochastic gradient methods (SGM). However, most of the existing work focus o... 详细信息
来源: 评论
Learning rate selection in stochastic gradient methods based on line search strategies
收藏 引用
APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING 2023年 第1期31卷
作者: Franchini, Giorgia Porta, Federica Ruggiero, Valeria Trombini, Ilaria Zanni, Luca Univ Modena & Reggio Emilia Dept Phys Informat & Math Via Campi 213-13 I-41125 Modena MO Italy Univ Ferrara Dept Math & Comp Sci Ferrara Italy Univ Parma Dept Math Phys & Comp Sci Parma Italy
Finite-sum problems appear as the sample average approximation of a stochastic optimization problem and often arise in machine learning applications with large scale data sets. A very popular approach to face finite-s... 详细信息
来源: 评论
Optimal convergence for distributed learning with stochastic gradient methods and spectral algorithms
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 5852-5914页
作者: Junhong Lin Volkan Cevher Center for Data Science Zhejiang University Hang Zhou P. R. China. and Laboratory for Information and Inference Systems École Polytechnique Fédérale de Lausanne Lausanne Switzerland Laboratory for Information and Inference Systems École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We study generalization properties of distributed algorithms in the setting of nonparametric regression over a reproducing kernel Hilbert space (RKHS). We first investigate distributed stochastic gradient methods (SGM... 详细信息
来源: 评论
Convergences of regularized algorithms and stochastic gradient methods with random projections
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2020年 第1期21卷 690-733页
作者: Junhong Lin Volkan Cevher Center for Data Science Zhejiang University Hang Zhou P. R. China. and Laboratory for Information and Inference Systems École Polytechnique Fédérale de Lausanne Lausanne Switzerland Laboratory for Information and Inference Systems École Polytechnique Fédérale de Lausanne Lausanne Switzerland
We study the least-squares regression problem over a Hilbert space, covering nonparametric regression over a reproducing kernel Hilbert space as a special case. We first investigate regularized algorithms adapted to a... 详细信息
来源: 评论