This study proposes a coil current model and an energy storage motor current (ESMC) model of circuit breakers (CBs) with spring operated mechanism. To make sure the signals generated by the models are identical to the...
详细信息
This study proposes a coil current model and an energy storage motor current (ESMC) model of circuit breakers (CBs) with spring operated mechanism. To make sure the signals generated by the models are identical to the actual ones, this study proposes a stochastic optimisation algorithm to optimise the model parameters. Based on the data produced by the optimised models, two fault diagnosis methods are proposed to assess operational condition and detect faults. The first method is based on fast template matching, which adopts K-means clustering algorithm to cluster the data and form a template library. The second one combines deep belief network and Softmax classifier, which can not only extract high level information of the characteristic signals, but also avoid the negative impact of the large dimension on classification results. In the simulation studies, the two methods are tested on various scenarios and their merits are demonstrated, respectively, where the latter one shows superior performance.
Synchronous machines are the most widely used form of generators in electrical power systems. Identifying the parameters of these generators in a non-invasive way is very challenging because of the inherent non-linear...
详细信息
Synchronous machines are the most widely used form of generators in electrical power systems. Identifying the parameters of these generators in a non-invasive way is very challenging because of the inherent non-linearity of power station performance. This study proposes a parameter identification method using a stochastic optimisation algorithm that is capable of identifying generator, exciter and turbine parameters using actual network data. An eighth order generator/turbine model is used in conjunction with the measured data to develop the objective function for optimisation. The effectiveness of the proposed method for the identification of turbo-generator parameters is demonstrated using data from a recorded network transient on a 178 MVA steam turbine generator connected to the UK's national grid.
暂无评论