咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 10 篇 工学
    • 7 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 电子科学与技术(可...
    • 1 篇 化学工程与技术
    • 1 篇 软件工程
  • 5 篇 理学
    • 4 篇 数学
    • 2 篇 统计学(可授理学、...
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...

主题

  • 14 篇 stochastic optim...
  • 2 篇 ranking scheme
  • 2 篇 statistical comp...
  • 2 篇 benchmarking
  • 1 篇 dsctool
  • 1 篇 markov chains
  • 1 篇 model predictive...
  • 1 篇 co-simulation
  • 1 篇 ensemble learnin...
  • 1 篇 robust confidenc...
  • 1 篇 delta-sigma modu...
  • 1 篇 noisy optimizati...
  • 1 篇 metamodels
  • 1 篇 district modelli...
  • 1 篇 evolution strate...
  • 1 篇 system-level des...
  • 1 篇 behavioral model...
  • 1 篇 population distr...
  • 1 篇 convergence
  • 1 篇 practical signif...

机构

  • 2 篇 jozef stefan ins...
  • 1 篇 chinese univ hon...
  • 1 篇 georgia inst tec...
  • 1 篇 fac math nat sci...
  • 1 篇 univ grenoble al...
  • 1 篇 univ toulouse in...
  • 1 篇 univ cambridge q...
  • 1 篇 univ primorska f...
  • 1 篇 imperial coll lo...
  • 1 篇 univ navarra tec...
  • 1 篇 univ angers lab ...
  • 1 篇 lri paris sud un...
  • 1 篇 univ ljubljana f...
  • 1 篇 stanford univ pa...
  • 1 篇 stanford univ ct...
  • 1 篇 russian acad sci...
  • 1 篇 univ minnesota d...
  • 1 篇 budapest technol...
  • 1 篇 jozef stefan ins...
  • 1 篇 stanford univ de...

作者

  • 4 篇 korosec peter
  • 4 篇 eftimov tome
  • 1 篇 tang hua
  • 1 篇 saadane sofiane
  • 1 篇 wang jingtao
  • 1 篇 weber rr
  • 1 篇 so anthony man-c...
  • 1 篇 gadat sebastien
  • 1 篇 yolchuyev agil
  • 1 篇 nazin a. v
  • 1 篇 liu huikang
  • 1 篇 seljak barbara k...
  • 1 篇 jebalia mohamed
  • 1 篇 panloup fabien
  • 1 篇 wang xiaolu
  • 1 篇 flatto l
  • 1 篇 gomez-acebo toma...
  • 1 篇 juditsky a. b.
  • 1 篇 tsybakov a. b.
  • 1 篇 sanchez-zabalaa ...

语言

  • 12 篇 英文
  • 2 篇 其他
检索条件"主题词=stochastic optimization algorithms"
14 条 记 录,以下是1-10 订阅
排序:
A Novel Approach to statistical comparison of meta-heuristic stochastic optimization algorithms using deep statistics
收藏 引用
INFORMATION SCIENCES 2017年 417卷 186-215页
作者: Eftimov, Tome Korosec, Peter Seljak, Barbara Korousic Jozef Stefan Inst Comp Syst Dept Jamova Cesta 39 Ljubljana 1000 Slovenia Jozef Stefan Int Postgrad Sch Jamova Cesta 39 Ljubljana 1000 Slovenia Fac Math Nat Sci & Informat Technol Glagoljaska Ulica 8 Koper 6000 Slovenia
In this paper a novel approach for making a statistical comparison of meta-heuristic stochastic optimization algorithms over multiple single-objective problems is introduced, where a new ranking scheme is proposed to ... 详细信息
来源: 评论
DSCTool: A web-service-based framework for statistical comparison of stochastic optimization algorithms
收藏 引用
APPLIED SOFT COMPUTING 2020年 87卷 105977-000页
作者: Eftimov, Tome Petelin, Gasper Korosec, Peter Jozef Stefan Inst Comp Syst Dept Ljubljana 1000 Slovenia Stanford Univ Dept Biomed Data Sci Stanford CA 94305 USA Stanford Univ Ctr Populat Hlth Sci Stanford CA 94305 USA Univ Ljubljana Fac Comp & Informat Sci Ljubljana 1000 Slovenia
DSCTool is a statistical tool for comparing performance of stochastic optimization algorithms on a single benchmark function (i.e. single-problem analysis) or a set of benchmark functions (i.e., multiple-problem analy... 详细信息
来源: 评论
Understanding Exploration and Exploitation Powers of Meta-heuristic stochastic optimization algorithms through Statistical Analysis  19
Understanding Exploration and Exploitation Powers of Meta-he...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Eftimov, Tome Korosec, Peter Jozef Stefan Inst Comp Syst Dept Ljubljana Slovenia Stanford Univ Ctr Populat Hlth Sci Palo Alto CA 94304 USA Univ Primorska Fac Math Nat Sci & Informat Technol Koper Slovenia
Understanding of exploration and exploitation powers of metaheuristic stochastic optimization algorithms is very important for algorithm developers. For this reason, we have recently proposed an approach for making a ... 详细信息
来源: 评论
Identifying practical significance through statistical comparison of meta-heuristic stochastic optimization algorithms
收藏 引用
APPLIED SOFT COMPUTING 2019年 85卷 105862-000页
作者: Eftimov, Tome Korosec, Peter Jozef Stefan Inst Comp Syst Dept Ljubljana 1000 Slovenia Stanford Univ Palo Alto CA 94305 USA
In this paper, we propose an extension of a recently proposed Deep Statistical Comparison (DSC) approach, called practical Deep Statistical Comparison (pDSC), which takes into account practical significance when makin... 详细信息
来源: 评论
algorithms of Robust stochastic optimization Based on Mirror Descent Method
收藏 引用
AUTOMATION AND REMOTE CONTROL 2019年 第9期80卷 1607-1627页
作者: Nazin, A., V Nemirovsky, A. S. Tsybakov, A. B. Juditsky, A. B. Russian Acad Sci Trapeznikov Inst Control Sci Moscow Russia Georgia Inst Technol Atlanta GA 30332 USA ENSAE CREST Palaiseau France Univ Grenoble Alpes Grenoble France
We propose an approach to the construction of robust non-Euclidean iterative algorithms by convex composite stochastic optimization based on truncation of stochastic gradients. For such algorithms, we establish sub-Ga... 详细信息
来源: 评论
Adaptive coordinate sampling for stochastic primal-dual optimization
收藏 引用
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH 2022年 第1期29卷 24-47页
作者: Liu, Huikang Wang, Xiaolu So, Anthony Man-Cho Imperial Coll London Imperial Coll Business Sch London SW7 2BX England Chinese Univ Hong Kong Dept Syst Engn & Engn Management Hong Kong Peoples R China
We consider the regularized empirical risk minimization (ERM) of linear predictors, which arises in a variety of problems in machine learning and statistics. After reformulating the original ERM as a bilinear saddle-p... 详细信息
来源: 评论
System-level post-optimization of Delta-Sigma modulators using finite difference stochastic approximation
收藏 引用
ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING 2016年 第1期88卷 31-42页
作者: Tang, Hua Univ Minnesota Dept Elect & Comp Engn Duluth MN 55812 USA
Traditional methods for system-level design of Delta-Sigma (a dagger I ) pound modulators typically assume linear modeling of the modulator, in which quantization noise is modeled as additive independent white noise. ... 详细信息
来源: 评论
Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments
收藏 引用
ALGORITHMICA 2011年 第3期59卷 425-460页
作者: Jebalia, Mohamed Auger, Anne Hansen, Nikolaus LRI Paris Sud Univ TAO Team INRIA Saclay Ile de France F-91405 Orsay France
Noise is present in many real-world continuous optimization problems. stochastic search algorithms such as Evolution Strategies (ESs) have been proposed as effective search methods in such contexts. In this paper, we ... 详细信息
来源: 评论
stochastic heavy ball
收藏 引用
ELECTRONIC JOURNAL OF STATISTICS 2018年 第1期12卷 461-529页
作者: Gadat, Sebastien Panloup, Fabien Saadane, Sofiane Univ Toulouse Toulouse Sch Econ UMR 5604 Toulouse France Univ Angers Lab Angevin Rech Math UMR 6093 Angers France Univ Toulouse Inst Math Toulouse UMR 5219 Toulouse France
This paper deals with a natural stochastic optimization procedure derived from the so-called Heavy-ball method differential equation, which was introduced by Polyak in the 1960s with his seminal contribution [Pol64]. ... 详细信息
来源: 评论
MINIMIZING EXPECTED MAKESPANS ON UNIFORM PROCESSOR SYSTEMS
收藏 引用
ADVANCES IN APPLIED PROBABILITY 1987年 第1期19卷 177-201页
作者: COFFMAN, EG FLATTO, L GAREY, MR WEBER, RR UNIV CAMBRIDGE QUEENS COLL CAMBRIDGE CB3 9ETENGLAND
We study the problem of scheduling n given jobs on m uniform processors to minimize expected makespan (maximum finishing time). Job execution times are not known in advance, but are known to be exponentially distribut... 详细信息
来源: 评论