咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 universal portfo...
  • 1 篇 portfolios
  • 1 篇 vectors
  • 1 篇 benchmark testin...
  • 1 篇 strongly adaptiv...
  • 1 篇 optimistic follo...
  • 1 篇 signal processin...
  • 1 篇 prediction algor...
  • 1 篇 accuracy
  • 1 篇 standards
  • 1 篇 mean-variance po...
  • 1 篇 robustness
  • 1 篇 adaptation model...
  • 1 篇 heuristic algori...

机构

  • 1 篇 hong kong univ s...

作者

  • 1 篇 palomar daniel p...
  • 1 篇 shi runhao

语言

  • 1 篇 英文
检索条件"主题词=strongly adaptive meta-algorithm"
1 条 记 录,以下是1-10 订阅
排序:
SAOFTRL: A Novel adaptive algorithmic Framework for Enhancing Online Portfolio Selection
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2024年 72卷 5291-5305页
作者: Shi, Runhao Palomar, Daniel P. Hong Kong Univ Sci & Technol HKUST Clear Water Bay Hong Kong Peoples R China
strongly adaptive meta-algorithms (SA-meta) are popular in online portfolio selection due to their resilience in adversarial environments and adaptability to market changes. However, their application is often limited... 详细信息
来源: 评论