咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 2 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 理学
    • 11 篇 数学
    • 1 篇 物理学
  • 6 篇 工学
    • 2 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 14 篇 structured conve...
  • 3 篇 fista
  • 3 篇 inertial forward...
  • 3 篇 primal-dual algo...
  • 2 篇 reverberation
  • 2 篇 accelerated prox...
  • 2 篇 nesterov method
  • 2 篇 golden ratio
  • 2 篇 vanishing dampin...
  • 2 篇 sparse
  • 2 篇 optimal complexi...
  • 2 篇 low-rank
  • 2 篇 target detection...
  • 2 篇 accelerated grad...
  • 2 篇 high-dimensional...
  • 2 篇 proximal-based m...
  • 1 篇 subgradient/grad...
  • 1 篇 semismooth newto...
  • 1 篇 90c25
  • 1 篇 subgradient meth...

机构

  • 3 篇 nanjing univ dep...
  • 2 篇 tokyo inst techn...
  • 2 篇 civil aviat flig...
  • 2 篇 lanzhou univ tec...
  • 2 篇 univ vienna fac ...
  • 1 篇 beijing normal u...
  • 1 篇 cadi ayyad univ ...
  • 1 篇 univ bourgogne f...
  • 1 篇 aramco research ...
  • 1 篇 singapore mit al...
  • 1 篇 nihon univ dept ...
  • 1 篇 cadi ayyad unive...
  • 1 篇 natl univ singap...
  • 1 篇 natl univ singap...
  • 1 篇 nanjing univ sch...
  • 1 篇 college of infor...
  • 1 篇 institut montpel...
  • 1 篇 univ montpellier...
  • 1 篇 hohai univ dept ...
  • 1 篇 univ bourgogne f...

作者

  • 3 篇 attouch hedy
  • 2 篇 ito masaru
  • 2 篇 chbani zaki
  • 2 篇 riahi hassan
  • 2 篇 ahookhosh masoud
  • 2 篇 xu hai-wen
  • 2 篇 chang xiaokai
  • 2 篇 yang junfeng
  • 2 篇 cabot alexandre
  • 2 篇 yang jun-feng
  • 1 篇 li weichang
  • 1 篇 chen ying
  • 1 篇 ying chen
  • 1 篇 yin chao
  • 1 篇 neumaier arnold
  • 1 篇 jiang kaifeng
  • 1 篇 toh kim-chuan
  • 1 篇 weichang li
  • 1 篇 fukuda mituhiro
  • 1 篇 sun defeng

语言

  • 14 篇 英文
检索条件"主题词=structured convex optimization"
14 条 记 录,以下是1-10 订阅
排序:
A HYBRID ALTERNATING MINIMIZATION ALGORITHM FOR structured convex optimization PROBLEMS WITH APPLICATION IN POISSONIAN IMAGE PROCESSING
收藏 引用
JOURNAL OF INDUSTRIAL AND MANAGEMENT optimization 2023年 第7期19卷 5078-5098页
作者: Chen, Hong-Mei Xu, Hai-Wen Yang, Jun-Feng Nanjing Univ Dept Math Nanjing 210093 Jiangsu Peoples R China Civil Aviat Flight Univ China Sch Sci Guanghan 618307 Sichuan Peoples R China
Motivated by applications in image processing, we consider a class of structured convex optimization problems in which the objective function is the sum of two component functions with favorable structures, and, furth... 详细信息
来源: 评论
A Modified Primal-Dual Algorithm for structured convex optimization with a Lipschitzian Term
收藏 引用
JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA 2024年 1-21页
作者: Yin, Chao Xu, Hai-Wen Yang, Jun-Feng Hohai Univ Dept Math Nanjing 210024 Peoples R China Civil Aviat Flight Univ China Sch Sci Guanghan 618307 Sichuan Peoples R China Nanjing Univ Sch Math Nanjing 210008 Peoples R China
This paper focuses on solving structured convex optimization problems that consist of a smooth term with a Lipschitzian gradient, and two nonsmooth terms. One of the nonsmooth functions is composed with a linear opera... 详细信息
来源: 评论
TARGET DETECTON AND TRACKING VIA structured convex optimization
TARGET DETECTON AND TRACKING VIA STRUCTURED CONVEX OPTIMIZAT...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Ge, Feng-Xiang Chen, Ying Li, Weichang Beijing Normal Univ Coll Informat Sci & Technol Beijing Peoples R China Aramco Serv Co Aramco Res Ctr Houston Houston TX 77096 USA
Moving target detection and tracking in reverberation environment is an important yet challenging problem in many applications such as speech, sonar, radar and seismic signal processing. Extending the early work of on... 详细信息
来源: 评论
A Golden Ratio Primal-Dual Algorithm for structured convex optimization
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2021年 第2期87卷 47-47页
作者: Chang, Xiaokai Yang, Junfeng Lanzhou Univ Technol Sch Sci Lanzhou Gansu Peoples R China Nanjing Univ Dept Math Nanjing Peoples R China
We design, analyze and test a golden ratio primal-dual algorithm (GRPDA) for solving structured convex optimization problem, where the objective function is the sum of two closed proper convex functions, one of which ... 详细信息
来源: 评论
Target detecton and tracking via structured convex optimization
Target detecton and tracking via structured convex optimizat...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Feng-Xiang Ge Ying Chen Weichang Li College of Information Science and Technology Beijing Normal University China Aramco Research Center - Houston Aramco Service Company United States of America
Moving target detection and tracking in reverberation environment is an important yet challenging problem in many applications such as speech, sonar, radar and seismic signal processing. Extending the early work of on... 详细信息
来源: 评论
New results on subgradient methods for strongly convex optimization problems with a unified analysis
收藏 引用
COMPUTATIONAL optimization AND APPLICATIONS 2016年 第1期65卷 127-172页
作者: Ito, Masaru Tokyo Inst Technol Dept Math & Comp Sci Meguro Ku 2-12-1-W8-41 Oh Okayama Tokyo 1528552 Japan
We develop subgradient- and gradient-based methods for minimizing strongly convex functions under a notion which generalizes the standard Euclidean strong convexity. We propose a unifying framework for subgradient met... 详细信息
来源: 评论
Optimal subgradient methods: computational properties for large-scale linear inverse problems
收藏 引用
optimization AND ENGINEERING 2018年 第4期19卷 815-844页
作者: Ahookhosh, Masoud Univ Vienna Fac Math Oskar Morgenstern Pl 1 A-1090 Vienna Austria
This paper studies the computational properties of the optimal subgradient algorithm (OSGA) for applications of linear inverse problems involving high-dimensional data. First, such convex problems are formulated as a ... 详细信息
来源: 评论
AN INEXACT ACCELERATED PROXIMAL GRADIENT METHOD FOR LARGE SCALE LINEARLY CONSTRAINED convex SDP
收藏 引用
SIAM JOURNAL ON optimization 2012年 第3期22卷 1042-1064页
作者: Jiang, Kaifeng Sun, Defeng Toh, Kim-Chuan Natl Univ Singapore Dept Math Singapore 119076 Singapore Natl Univ Singapore Risk Management Inst Singapore 119076 Singapore Singapore MIT Alliance Singapore 117576 Singapore
The accelerated proximal gradient (APG) method, first proposed by Nesterov for minimizing smooth convex functions, later extended by Beck and Teboulle to composite convex objective functions, and studied in a unifying... 详细信息
来源: 评论
GRPDA Revisited: Relaxed Condition and Connection to Chambolle-Pock's Primal-Dual Algorithm
收藏 引用
JOURNAL OF SCIENTIFIC COMPUTING 2022年 第3期93卷 1-18页
作者: Chang, Xiaokai Yang, Junfeng Lanzhou Univ Technol Sch Sci Lanzhou Gansu Peoples R China Nanjing Univ Dept Math Nanjing Peoples R China
Recently, a golden ratio primal-dual algorithm (GRPDA) was proposed by Chang and Yang for solving structured convex optimization problems. It is a new adaptation of the classical Arrow-Hurwicz method by using a convex... 详细信息
来源: 评论
A family of subgradient-based methods for convex optimization problems in a unifying framework
收藏 引用
optimization METHODS & SOFTWARE 2016年 第5期31卷 952-982页
作者: Ito, Masaru Fukuda, Mituhiro Nihon Univ Dept Math Coll Sci & Technol Chiyoda Ku 1-8-14 Kanda Surugadai Tokyo 1018308 Japan Tokyo Inst Technol Dept Math & Comp Sci Meguro Ku 2-12-1-W8-41 Oh Okayama Tokyo 1528552 Japan
We propose a new family of subgradient- and gradient-based methods which converges with optimal complexity for convex optimization problems whose feasible region is simple enough. This includes cases where the objecti... 详细信息
来源: 评论