咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 信息与通信工程

主题

  • 1 篇 image fusion
  • 1 篇 image texture
  • 1 篇 feature correlat...
  • 1 篇 supervised multi...
  • 1 篇 rotation forest
  • 1 篇 multisensor data...
  • 1 篇 support vector m...
  • 1 篇 remote sensing d...
  • 1 篇 classification a...
  • 1 篇 computational co...
  • 1 篇 feature-based fu...
  • 1 篇 feature space di...
  • 1 篇 support vector m...
  • 1 篇 random subspace
  • 1 篇 attribute profil...
  • 1 篇 textural feature...
  • 1 篇 feature-to-insta...
  • 1 篇 fused synthetic ...
  • 1 篇 nonnegative matr...
  • 1 篇 map

机构

  • 1 篇 shahid chamran u...
  • 1 篇 shahid chamran u...

作者

  • 1 篇 kabolizadeh most...
  • 1 篇 rangzan kazem
  • 1 篇 akbarizadeh ghol...
  • 1 篇 karimi danya

语言

  • 1 篇 英文
检索条件"主题词=supervised multiple-feature learning"
1 条 记 录,以下是1-10 订阅
排序:
Effective supervised multiple-feature learning for fused radar and optical data classification
收藏 引用
IET RADAR SONAR AND NAVIGATION 2017年 第5期11卷 768-777页
作者: Karimi, Danya Akbarizadeh, Gholamreza Rangzan, Kazem Kabolizadeh, Mostafa Shahid Chamran Univ Ahvaz Dept Remote Sensing & GIS Fac Earth Sci Ahvaz Iran Shahid Chamran Univ Ahvaz Dept Elect Engn Fac Engn Ahvaz Iran
In multi-sensor data fusion based on multiple features, the high dimensionality of feature space increases the runtime and computational complexity. The present study proposes a new algorithm based on the combination ... 详细信息
来源: 评论