咨询与建议

限定检索结果

文献类型

  • 63 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 77 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 72 篇 工学
    • 60 篇 计算机科学与技术...
    • 15 篇 电气工程
    • 7 篇 控制科学与工程
    • 5 篇 机械工程
    • 3 篇 动力工程及工程热...
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 2 篇 石油与天然气工程
    • 2 篇 航空宇航科学与技...
    • 1 篇 力学(可授工学、理...
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 环境科学与工程(可...
  • 17 篇 管理学
    • 17 篇 管理科学与工程(可...
  • 10 篇 理学
    • 6 篇 数学
    • 4 篇 生物学
  • 1 篇 农学

主题

  • 77 篇 surrogate-assist...
  • 12 篇 differential evo...
  • 8 篇 optimization
  • 7 篇 radial basis fun...
  • 7 篇 expensive optimi...
  • 6 篇 particle swarm o...
  • 6 篇 expensive multi-...
  • 6 篇 evolutionary com...
  • 5 篇 expensive many-o...
  • 5 篇 expensive optimi...
  • 5 篇 computational mo...
  • 4 篇 multi-objective ...
  • 4 篇 bayesian optimiz...
  • 4 篇 gaussian process
  • 4 篇 multiobjective o...
  • 3 篇 kriging model
  • 3 篇 vectors
  • 3 篇 surrogate model
  • 3 篇 linear programmi...
  • 3 篇 expensive constr...

机构

  • 5 篇 xidian univ sch ...
  • 3 篇 natl ctr technol...
  • 3 篇 honda res inst e...
  • 3 篇 northeastern uni...
  • 3 篇 univ surrey dept...
  • 3 篇 huazhong univ sc...
  • 3 篇 nanchang univ sc...
  • 2 篇 east china norma...
  • 2 篇 south china univ...
  • 2 篇 northwestern pol...
  • 2 篇 nanjing univ inf...
  • 2 篇 shaanxi normal u...
  • 2 篇 northeastern uni...
  • 2 篇 nanchang univ ji...
  • 2 篇 anhui univ techn...
  • 2 篇 east china norma...
  • 2 篇 anhui univ techn...
  • 2 篇 jiangxi tellhow ...
  • 2 篇 east china univ ...
  • 2 篇 south china univ...

作者

  • 5 篇 wang handing
  • 5 篇 yang zan
  • 5 篇 nakata masaya
  • 5 篇 gao liang
  • 4 篇 liu yuanchao
  • 4 篇 wei feng-feng
  • 4 篇 jin yaochu
  • 4 篇 chen wei-neng
  • 4 篇 nishihara kei
  • 4 篇 qiu haobo
  • 3 篇 wang xilu
  • 3 篇 schmitt sebastia...
  • 3 篇 liu yuanhao
  • 3 篇 olhofer markus
  • 3 篇 li fei
  • 3 篇 zhou aimin
  • 2 篇 liu jiansheng
  • 2 篇 tan shubin
  • 2 篇 dong huachao
  • 2 篇 zhao feng

语言

  • 77 篇 英文
检索条件"主题词=surrogate-assisted evolutionary algorithm"
77 条 记 录,以下是61-70 订阅
排序:
evolutionary multiobjective optimization assisted by scalarization function approximation for high-dimensional expensive problems
收藏 引用
SWARM AND evolutionary COMPUTATION 2024年 86卷
作者: Horaguchi, Yuma Nishihara, Kei Nakata, Masaya Yokohama Natl Univ Fac Engn Tokiwadai 79-5 Yokohama Kanagawa 2408501 Japan
surrogate -assisted evolutionary algorithms (SAEAs) are a promising approach for solving expensive multiobjective optimization problems, but they often cannot address high -dimensional problems. Although one common ap... 详细信息
来源: 评论
Fitness Approximation Through Machine Learning with Dynamic Adaptation to the evolutionary State
收藏 引用
INFORMATION 2024年 第12期15卷 744-744页
作者: Tzruia, Itai Halperin, Tomer Sipper, Moshe Elyasaf, Achiya Ben Gurion Univ Negev Dept Comp Sci IL-8410501 Beer Sheva Israel Ben Gurion Univ Negev Dept Software & Informat Syst Engn IL-8410501 Beer Sheva Israel
We present a novel approach to performing fitness approximation in genetic algorithms (GAs) using machine learning (ML) models, focusing on dynamic adaptation to the evolutionary state. We compare different methods fo... 详细信息
来源: 评论
A Distributed RBF-assisted Differential Evolution for Distributed Expensive Constrained Optimization  1
收藏 引用
4th International Conference on Distributed Artificial Intelligence (DAI)
作者: Wei, Feng-Feng Guo, Xiao-Qi Qiu, Wen-Jin Chen, Tai-You Chen, Wei-Neng South China Univ Technol Guangzhou Peoples R China
With the development of Internet of things and distributed computing techniques, distributed and expensive constrained optimization problems (DECOPs) have emerged in the industry. DECOPs refer to optimization problems... 详细信息
来源: 评论
surrogate-assisted Differential Evolution with Adaptation of Training Data Selection Criterion
Surrogate-assisted Differential Evolution with Adaptation of...
收藏 引用
IEEE Symposium Series on Computational Intelligence (IEEE SSCI)
作者: Nishihara, Kei Nakata, Masaya Yokohama Natl Univ Grad Sch Engn Sci Yokohama Kanagawa Japan
In surrogate-assisted evolutionary algorithms (SAEAs), the selection criterion of training data is a crucial option to improve the prediction accuracy of surrogate models. In this paper, we hypothesize that a proper s... 详细信息
来源: 评论
A surrogate-assisted Partial Optimization for Expensive Constrained Optimization Problems  18th
A Surrogate-Assisted Partial Optimization for Expensive Cons...
收藏 引用
18th International Conference on Parallel Problem Solving from Nature (PPSN)
作者: Nishihara, Kei Nakata, Masaya Yokohama Natl Univ Yokohama Kanagawa 2408501 Japan
surrogate-assisted evolutionary algorithms (SAEAs) are gradually gaining attention as a method for solving expensive optimization problems with inequality constraints. Most SAEAs construct a surrogate model for each o... 详细信息
来源: 评论
Progressive Sampling surrogate-assisted Particle Swarm Optimization for Large-Scale Expensive Optimization
Progressive Sampling Surrogate-Assisted Particle Swarm Optim...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Wang, Hong-Rui Chen, Chun-Hua Li, Yun Zhang, Jun Zhi-Hui-Zhan South China Univ Technol Sch Comp Sci Engn Guangzhou 510006 Peoples R China South China Univ Technol Sch Software Engn Guangzhou 510006 Peoples R China Univ Elect & Technol China Shenzhen Inst Adv Study Shenzhen 518110 Peoples R China Hanyang Univ Anshan 15588 South Korea
surrogate-assisted evolutionary algorithms (SAEAs) have performed well on low- and medium-scale expensive optimization problems (EOPs). However, with the dimensionality increasing, existing SAEAs have trouble getting ... 详细信息
来源: 评论
A Constrained Sampling assisted Differential Evolution for Expensive Optimization  15
A Constrained Sampling Assisted Differential Evolution for E...
收藏 引用
15th International Conference on Advanced Computational Intelligence (ICACI)
作者: Wei, Feng-Feng Chen, Tai-You Shi, Xuan-Li Chen, Wei-Neng South China Univ Technol Sch Comp Sci & Engn Guangzhou Peoples R China
surrogate-assisted evolutionary algorithms (SAEAs) have become a widely used method to solve computationally expensive optimization problems, in which the evaluation of objective has high time cost. However, in many p... 详细信息
来源: 评论
Deadline-Driven Approach for Multi-Fidelity surrogate-assisted Environmental Model Calibration SWAN Wind Wave Model Case Study  19
Deadline-Driven Approach for Multi-Fidelity Surrogate-Assist...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Nikitin, Nikolay O. Vychuzhanin, Pavel Hvatov, Alexander Deeva, Irina Kalyuzhnaya, Anna, V Kovalchuk, Sergey, V ITMO Univ St Petersburg Russia
This paper describes the approach for calibration of environmental models with the presence of time and quality restrictions. Advantages of the suggested strategy are based on two main concepts. The first advantage wa... 详细信息
来源: 评论
MOEA/D-S3: MOEA/D using SVM-based surrogates adjusted to Subproblems for Many objective optimization
MOEA/D-S<SUP>3</SUP>: MOEA/D using SVM-based Surrogates adju...
收藏 引用
IEEE Congress on evolutionary Computation (CEC) as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Sonoda, Takumi Nakata, Masaya Yokohama Natl Univ Collage Engn Sci Yokohama Kanagawa Japan
This paper proposes a surrogate-assisted MOEA/D using SVM-based surrogates adjusted to subproblems (MOEA/D-S-3), which intends to achieve the following technical advantages. Firstly, in order to construct a proper sur... 详细信息
来源: 评论
Enhancing SAEAs with unevaluated solutions:a case study of relation model for expensive optimization
收藏 引用
Science China(Information Sciences) 2024年 第2期67卷 41-58页
作者: Hao HAO Xiaoqun ZHANG Aimin ZHOU Institute of Natural Sciences Shanghai Jiao Tong University Shanghai Frontiers Science Center of Molecule Intelligent Syntheses School of Computer Science and Technology East China Normal University
surrogate-assisted evolutionary algorithms(SAEAs) hold significant importance in resolving expensive optimization problems. Extensive efforts have been devoted to improving the efficiency of SAEAs through the developm... 详细信息
来源: 评论