Latin squares are used as scramblers on symmetric-key algorithms that generate pseudo-random sequences of the same length. The robustness and effectiveness of these algorithms are respectively based on the extremely l...
详细信息
Latin squares are used as scramblers on symmetric-key algorithms that generate pseudo-random sequences of the same length. The robustness and effectiveness of these algorithms are respectively based on the extremely large key space and the appropriate choice of the Latin square under consideration. It is also known the importance that isomorphism classes of Latin squares have to design an effective algorithm. In order to delve into this last aspect, we improve in this paper the efficiency of the known methods on computational algebraic geometry to enumerate and classify partial Latin squares. Particularly, we introduce the notion of affine algebraic set of a partial Latin square L = (l(ij)) of order n over a field K as the set of zeros of the binomial ideal < x(i)x(j) - x(lij) : (i, j) is a non-empty cell inL > subset of K[x(1), ... , x(n)]. Since isomorphic partial Latin squares give rise to isomorphic affine algebraic sets, every isomorphism invariant of the latter constitutes an isomorphism invariant of the former. In particular, we deal computationally with the problem of deciding whether two given partial Latin squares have either the same or isomorphic affine algebraic sets. To this end, we introduce a new pair of equivalence relations among partial Latin squares: being partial transpose and being partial isotopic.
The classification of quantum symmetric-key encryption protocol is presented. According to five elements of a quantum symmetric-key encryption protocol: plaintext, ciphertext, key, encryption algorithm and decryption ...
详细信息
ISBN:
(纸本)9781628413427
The classification of quantum symmetric-key encryption protocol is presented. According to five elements of a quantum symmetric-key encryption protocol: plaintext, ciphertext, key, encryption algorithm and decryption algorithm, there are 32 different kinds of them. Among them, 5 kinds of protocols have already been constructed and studied, and 21 kinds of them are proved to be impossible to construct, the last 6 kinds of them are not yet presented effectively. That means the research on quantum symmetric-key encryption protocol only needs to consider with 5 kinds of them nowadays.
symmetric cryptography relies on pairs of identical secret keys shared by the legitimate communicating parties. To implement a symmetric-key algorithm for cryptography, a major concern is to develop secure methods for...
详细信息
ISBN:
(纸本)9781728111513
symmetric cryptography relies on pairs of identical secret keys shared by the legitimate communicating parties. To implement a symmetric-key algorithm for cryptography, a major concern is to develop secure methods for distribution of the secret key. In securing the wireless fading channels by symmetric-key algorithms, the physical layer properties of the channel can be exploited for distribution of the secret keys. In this approach, the channel state provides a common randomness which is shared by the legitimate users but is mostly unknown to an eavesdropper. By means of signal processing techniques, this common randomness is extracted into random secret keys. This paper establishes an information theoretic upper bound on the rate at which the secret keys can be extracted. Instead of the conventional approach that relies on mathematical models for the wireless channel, this paper adopts an experimental approach to estimate this bound from empirical data. A set of signal processing techniques is developed here to numerically estimate this bound for a pair of received signal strength (RSS) recorded by indoor commercial radios.
In this paper, we present a sensing device with the optical temperature sensors-based quad receiver (Quad-RX) module and a security module. In addition, in order to prevent cyberattacks on critical national infrastruc...
详细信息
In this paper, we present a sensing device with the optical temperature sensors-based quad receiver (Quad-RX) module and a security module. In addition, in order to prevent cyberattacks on critical national infrastructures and key facilities, we implemented symmetric-key and secure hash algorithm-based hardware security modules in the key elements of the sensing device. A preliminary test was conducted prior to a field trial to verify the performance of the developed sensing device. The accuracy and stability of the sensing device were then verified for 1 month in a field test at facilities for energy storage systems and photovoltaic converters in sewage treatment plants.
暂无评论