Multicore CPUs and cheap co-processors such as GPUs create opportunities for vastly accelerating database queries. However, given the differences in their threading models, expected granularities of parallelism, and m...
详细信息
ISBN:
(纸本)9781450341974
Multicore CPUs and cheap co-processors such as GPUs create opportunities for vastly accelerating database queries. However, given the differences in their threading models, expected granularities of parallelism, and memory subsystems, effectively utilising all cores with all co-processors for an intensive query is very difficult. This paper introduces a novel templating methodology to create portable, yet architecture-aware, algorithms. We apply this methodology on the very compute-intensive task of calculating the skycube, a materialisation of exponentially many skyline query results, which finds applications in data exploration and multi-criteria decision making. We define three parallel templates, two that leverage insights from previous skycube research and a third that exploits a novel point-based paradigm to expose more data parallelism. An experimental study shows that, relative to the state-of-the-art that does not parallelise well due to its memory and cache requirements, our algorithms provide an order of magnitude improvement on either architecture and proportionately improve as more GPUs are added.
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge rep...
详细信息
By combining a number of simple transducer modules, an arbitrarily complex sensing system may be produced to accommodate a wide range of applications. This work outlines a novel software architecture and knowledge representation scheme that has been developed to support this type of flexible and reconfigurable modular sensing system. template algorithms are used to embed intelligence within each module. As modules are added or removed, the composite sensor is able to automatically determine its overall geometry and assume an appropriate collective identity. A virtual machine-based middleware layer runs on top of a real-time operating system with a pre-emptive kernel, enabling platform-independent template algorithms to be written once and run on any module, irrespective of its underlying hardware architecture. Applications that may benefit from easily reconfigurable modular sensing systems include flexible inspection, mobile robotics, surveillance, and space exploration.
暂无评论