咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 5 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 13 篇 工学
    • 11 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 3 篇 软件工程
  • 4 篇 理学
    • 3 篇 数学
    • 1 篇 化学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 16 篇 tensor computati...
  • 3 篇 tensors
  • 2 篇 neural networks
  • 2 篇 spatial accelera...
  • 2 篇 kernel
  • 2 篇 data structure
  • 2 篇 code generation
  • 1 篇 parallel impleme...
  • 1 篇 calculs tensorie...
  • 1 篇 parallel algorit...
  • 1 篇 high bandwidth m...
  • 1 篇 ensemble learnin...
  • 1 篇 data processing
  • 1 篇 libraries
  • 1 篇 subspace pursuit
  • 1 篇 decision support...
  • 1 篇 simd
  • 1 篇 matlab
  • 1 篇 parallel algo- r...
  • 1 篇 field of science

机构

  • 1 篇 sorbonne univ un...
  • 1 篇 peking univ peop...
  • 1 篇 barcelona superc...
  • 1 篇 northeastern uni...
  • 1 篇 paul scherrer in...
  • 1 篇 huawei technol f...
  • 1 篇 inmar intelligen...
  • 1 篇 univ bergen dept...
  • 1 篇 sorbonne univ un...
  • 1 篇 ens lyon 46 alle...
  • 1 篇 univ sherbrooke ...
  • 1 篇 univ lyon univ c...
  • 1 篇 ens lyon lyon
  • 1 篇 agh univ sci & t...
  • 1 篇 univ cent florid...
  • 1 篇 sci & technol fa...
  • 1 篇 univ alberta dep...
  • 1 篇 robert bosch gmb...
  • 1 篇 univ sherbrooke ...
  • 1 篇 univ politecn ca...

作者

  • 1 篇 ballard grey
  • 1 篇 al daas hussam
  • 1 篇 wang fuyu
  • 1 篇 feiguin adrian
  • 1 篇 pawlowski filip ...
  • 1 篇 wei anjiang
  • 1 篇 li xiuhong
  • 1 篇 ucar bora
  • 1 篇 liu fuqiang
  • 1 篇 puschel markus
  • 1 篇 rouse kathryn
  • 1 篇 jin yicheng
  • 1 篇 kourtis stefanos
  • 1 篇 grigori laura
  • 1 篇 wozniak michal
  • 1 篇 chen xinyu
  • 1 篇 wu bingyang
  • 1 篇 harrison adam p.
  • 1 篇 yzelman a. n.
  • 1 篇 beltran vicenc

语言

  • 16 篇 英文
检索条件"主题词=tensor computations"
16 条 记 录,以下是1-10 订阅
排序:
tensor computations-Part I
收藏 引用
COMPUTING IN SCIENCE & ENGINEERING 2023年 第5期25卷 4-5页
作者: Feiguin, Adrian Kourtis, Stefanos Northeastern Univ Dept Phys Boston MA 02115 USA Univ Sherbrooke Dept Phys Sherbrooke PQ J1K 2R1 Canada Univ Sherbrooke Inst Quant Sherbrooke PQ J1K 2R1 Canada
来源: 评论
A multi-dimensional Morton-ordered block storage for mode-oblivious tensor computations
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2019年 33卷 34-44页
作者: Pawlowski, Filip Ucar, Bora Yzelman, Albert-Jan Huawei Technol France 20 Quai Point du Jour F-92100 Boulogne France ENS Lyon Lyon France Univ Lyon Univ Claude Bernard Lyon 1 LIP UMR 5668 CNRSENS LyonInria F-69007 Lyon France
Computation on tensors, treated as multidimensional arrays, revolve around generalized basic linear algebra subroutines (BLAS). We propose a novel data structure in which tensors are blocked and blocks are stored in a... 详细信息
来源: 评论
AMOS: Enabling Automatic Mapping for tensor computations On Spatial Accelerators with Hardware Abstraction  22
AMOS: Enabling Automatic Mapping for Tensor Computations On ...
收藏 引用
49th IEEE/ACM Annual International Symposium on Computer Architecture (ISCA)
作者: Zheng, Size Chen, Renze Wei, Anjiang Jin, Yicheng Han, Qin Lu, Liqiang Wu, Bingyang Li, Xiuhong Yan, Shengen Liang, Yun Peking Univ Beijing Peoples R China Stanford Univ Stanford CA USA Sensetime Res Beijing Peoples R China Shanghai Lab Shanghai Peoples R China
Hardware specialization is a promising trend to sustain performance growth. Spatial hardware accelerators that employ specialized and hierarchical computation and memory resources have recently shown high performance ... 详细信息
来源: 评论
Correlating Time Series With Interpretable Convolutional Kernels
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2025年 第6期37卷 3272-3283页
作者: Chen, Xinyu Cai, HanQin Liu, Fuqiang Zhao, Jinhua MIT Dept Urban Studies & Planning Cambridge MA 02139 USA Univ Cent Florida Dept Stat & Data Sci Dept Comp Sci Orlando FL 32816 USA McGill Univ Dept Civil Engn Montreal PQ H3A 0C3 Canada
This study addresses the problem of convolutional kernel learning in univariate, multivariate, and multidimensional time series data, which is crucial for interpreting temporal patterns in time series and supporting d... 详细信息
来源: 评论
Computing Dense tensor Decompositions with Optimal Dimension Trees
收藏 引用
ALGORITHMICA 2019年 第5期81卷 2092-2121页
作者: Kaya, Oguz Robert, Yves Fac Sci Orsay LRI Bat 650 F-91405 Orsay France ENS Lyon 46 Allee Italie F-69007 Lyon France Univ Tennessee Knoxville TN 37996 USA
Dense tensor decompositions have been widely used in many signal processing problems including analyzing speech signals, identifying the localization of signal sources, and many other communication applications. Compu... 详细信息
来源: 评论
Numeric tensor framework: Exploiting and extending Einstein notation
收藏 引用
JOURNAL OF COMPUTATIONAL SCIENCE 2016年 16卷 128-139页
作者: Harrison, Adam P. Joseph, Dileepan Univ Alberta Dept Elect & Comp Engn Edmonton AB Canada
The numeric tensor (NT) framework addresses and unifies a growing body of work on high-dimensional algebra and software for technical computing. Its NT algebra exploits and extends Einstein notation, offering unmatche... 详细信息
来源: 评论
COMMUNICATION LOWER BOUNDS AND OPTIMAL ALGORITHMS FOR MULTIPLE tensor-TIMES-MATRIX COMPUTATION
收藏 引用
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS 2024年 第1期45卷 477-477页
作者: AL Daas, Hussam Ballard, Grey Grigori, Laura Kumar, Suraj Rouse, Kathryn Sci & Technol Facil Council Rutherford Appleton Lab Didcot OX11 0QX Oxfordshire England Wake Forest Univ Comp Sci Winston Salem NC 27106 USA Ecole Polytech Fed Lausanne PFL Inst Math CH-1015 Lausanne Switzerland Paul Scherrer Inst Lab Simulat & Modelling CH-5232 Villigen Switzerland Sorbonne Univ Univ Paris Inria CNRS Paris France Inria Lyon Ctr Villeurbanne France Sorbonne Univ Univ Paris Inria CNRSLab Jacques Louis Lions Paris France Inmar Intelligence Winston Salem NC 27101 USA
Multiple tensor -times -matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish ... 详细信息
来源: 评论
Joint Program and Layout Transformations to Enable Convolutional Operators on Specialized Hardware Based on Constraint Programming
收藏 引用
ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION 2022年 第1期19卷 1–26页
作者: Rieber, Dennis Acosta, Axel Froening, Holger Robert Bosch GmbH Corp Res Gerlingen Germany Heidelberg Univ Inst Comp Engn Heidelberg Germany
The success of Deep Artificial Neural Networks (DNNs) in many domains created a rich body of research concerned with hardware accelerators for compute-intensive DNN operators. However, implementing such operators effi... 详细信息
来源: 评论
A Native tensor-Vector Multiplication Algorithm for High Performance Computing
收藏 引用
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 2022年 第12期33卷 3363-3374页
作者: Martinez-Ferrer, Pedro J. Yzelman, A. N. Beltran, Vicenc Barcelona Supercomp Ctr BSC Barcelona 08034 Spain Univ Politecn Catalunya UPC Barcelona 08034 Spain Huawei Technol Switzerland AG Comp Syst Lab CH-3097 Zurich Switzerland
tensor computations are important mathematical operations for applications that rely on multidimensional data. The tensor-vector multiplication (TVM) is the most memory-bound tensor contraction in this class of operat... 详细信息
来源: 评论
New Algorithm for tensor Contractions on Multi-Core CPUs, GPUs, and Accelerators Enables CCSD and EOM-CCSD Calculations with over 1000 Basis Functions on a Single Compute Node
收藏 引用
JOURNAL OF COMPUTATIONAL CHEMISTRY 2017年 第11期38卷 842-853页
作者: Kaliman, Ilya A. Krylov, Anna I. Univ Southern Calif Dept Chem Los Angeles CA 90089 USA
A new hardware-agnostic contraction algorithm for tensors of arbitrary symmetry and sparsity is presented. The algorithm is implemented as a stand-alone open-source code libxm. This code is also integrated with genera... 详细信息
来源: 评论