咨询与建议

限定检索结果

文献类型

  • 44 篇 期刊文献
  • 11 篇 会议

馆藏范围

  • 55 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 46 篇 工学
    • 26 篇 计算机科学与技术...
    • 25 篇 电气工程
    • 7 篇 软件工程
    • 6 篇 信息与通信工程
    • 5 篇 电子科学与技术(可...
    • 2 篇 力学(可授工学、理...
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 控制科学与工程
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 测绘科学与技术
  • 22 篇 理学
    • 17 篇 数学
    • 7 篇 物理学
    • 1 篇 化学
    • 1 篇 统计学(可授理学、...
  • 9 篇 医学
    • 8 篇 临床医学
    • 1 篇 特种医学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 55 篇 tensor singular ...
  • 9 篇 tensor robust pr...
  • 8 篇 tensor completio...
  • 6 篇 tensor nuclear n...
  • 5 篇 singular value d...
  • 4 篇 block tensor
  • 4 篇 low-rank tensor ...
  • 4 篇 tensors
  • 4 篇 low-rank
  • 4 篇 alternating dire...
  • 4 篇 low-rank tensor ...
  • 4 篇 low rank tensor ...
  • 4 篇 principal compon...
  • 3 篇 image recovery
  • 3 篇 robust tensor pr...
  • 3 篇 tensor principal...
  • 3 篇 matrix decomposi...
  • 2 篇 sparse matrices
  • 2 篇 low-rank tensor ...
  • 2 篇 convex functions

机构

  • 3 篇 southwest univ s...
  • 2 篇 south dakota min...
  • 2 篇 yunnan univ sch ...
  • 2 篇 kash inst elect ...
  • 2 篇 changsha univ sc...
  • 2 篇 southwest univ c...
  • 2 篇 univ elect sci &...
  • 2 篇 southwestern uni...
  • 2 篇 univ essex sch c...
  • 1 篇 north minzu univ...
  • 1 篇 texas tech univ ...
  • 1 篇 agcy sci technol...
  • 1 篇 taiyuan normal u...
  • 1 篇 univ north carol...
  • 1 篇 zhongyuan univ t...
  • 1 篇 south dakota min...
  • 1 篇 cuny coll staten...
  • 1 篇 yunnan univ yunn...
  • 1 篇 hebei univ techn...
  • 1 篇 southern univ sc...

作者

  • 6 篇 liu yipeng
  • 6 篇 zhu ce
  • 5 篇 chen longxi
  • 3 篇 caudle kyle
  • 3 篇 wang jianjun
  • 3 篇 ozdemir cagri
  • 3 篇 he jingfei
  • 3 篇 zhang feng
  • 3 篇 hoover randy c.
  • 2 篇 ng michael k.
  • 2 篇 wang wendong
  • 2 篇 chen xi
  • 2 篇 sun weize
  • 2 篇 zhou yatong
  • 2 篇 song yun
  • 2 篇 wu fengsheng
  • 2 篇 jiang tai-xiang
  • 2 篇 yang kun
  • 2 篇 li chaoqian
  • 2 篇 li yaotang

语言

  • 55 篇 英文
检索条件"主题词=tensor singular value decomposition"
55 条 记 录,以下是11-20 订阅
排序:
Enhanced tensor RPCA and its Application
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021年 第6期43卷 2133-2140页
作者: Gao, Quanxue Zhang, Pu Xia, Wei Xie, Deyan Gao, Xinbo Tao, Dacheng Xidian Univ Integrated Serv Networks Xian 710071 Peoples R China Northwestern Polytech Univ Unmanned Syst Res Inst Xian 710069 Peoples R China Xidian Univ Sch Elect Engn Xian 710071 Peoples R China Chongqing Univ Posts & Telecommun Chongqing Key Lab Image Cognit Chongqing 400065 Peoples R China Univ Sydney Fac Engn & Informat Technol UBTECH Sydney Artificial Intelligence Ctr Darlington NSW 2008 Australia Univ Sydney Fac Engn & Informat Technol Sch Informat Technol Darlington NSW 2008 Australia
Despite the promising results, tensor robust principal component analysis (TRPCA), which aims to recover underlying low-rank structure of clean tensor data corrupted with noise/outliers by shrinking all singular value... 详细信息
来源: 评论
tensor discriminant analysis on grassmann manifold with application to video based human action recognition
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2024年 第8期15卷 3353-3365页
作者: Ozdemir, Cagri Hoover, Randy C. Caudle, Kyle Braman, Karen South Dakota Mines Dept Comp Sci & Engn 501 E St Joseph St Rapid City SD 57701 USA South Dakota Mines Dept Math 501 E St Joseph St Rapid City SD 57701 USA
Representing videos as linear subspaces on Grassmann manifolds has made great strides in action recognition problems. Recent studies have explored the convenience of discriminant analysis by making use of Grassmann ke... 详细信息
来源: 评论
Generalized Visual Information Analysis Via tensorial Algebra
收藏 引用
JOURNAL OF MATHEMATICAL IMAGING AND VISION 2020年 第4期62卷 560-584页
作者: Liao, Liang Maybank, Stephen John Zhongyuan Univ Technol Sch Elect & Informat Zhengzhou 450000 Peoples R China Univ London Birkbeck Coll London WC1E 7HX England
High-order data are modeled using matrices whose entries are numerical arrays of a fixed size. These arrays, called t-scalars, form a commutative ring under the convolution product. Matrices with elements in the ring ... 详细信息
来源: 评论
A Fast tensor Completion Method Based on tensor QR decomposition and tensor Nuclear Norm Minimization
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2021年 7卷 1267-1277页
作者: Wu, Fengsheng Li, Yaotang Li, Chaoqian Wu, Ying Yunnan Univ Sch Math & Stat Kunming 650091 Yunnan Peoples R China
Currently, the tensor completion problem has been paid high attention in the machine learning, especially in the field of computer vision and image processing. The low-rank tensor completion methods based on the tenso... 详细信息
来源: 评论
tensor robust principal component analysis with total generalized variation for high-dimensional data recovery
收藏 引用
APPLIED MATHEMATICS AND COMPUTATION 2024年 483卷
作者: Xu, Zhi Yang, Jing-Hua Wang, Chuan-long Wang, Fusheng Yan, Xi-hong Taiyuan Normal Univ Sch Math & Stat Jinzhong 030619 Shanxi Peoples R China Taiyuan Normal Univ Shanxi Key Lab Intelligent Optimizat Comp & Blockc Jinzhong 030619 Shanxi Peoples R China Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 611756 Sichuan Peoples R China
In the past few years, tensor robust principal component analysis (TRPCA) which is based on tensor singular value decomposition (t-SVD) has got a lot of attention in recovering low-rank tensor corrupted by sparse nois... 详细信息
来源: 评论
Low-Rank tensor Completion for Image and Video Recovery via Capped Nuclear Norm
收藏 引用
IEEE ACCESS 2019年 7卷 112142-112153页
作者: Chen, Xi Li, Jie Song, Yun Li, Feng Chen, Jianjun Yang, Kun Changsha Univ Sci & Technol Hunan Prov Key Lab Intelligent Proc Big Data Tran Changsha 410114 Hunan Peoples R China Changsha Univ Sci & Technol Sch Comp & Commun Engn Changsha 410114 Hunan Peoples R China Chinese Acad Sci Inst Informat Engn Natl Engn Lab Informat Secur Technol Beijing Peoples R China Univ Chinese Acad Sci Sch Cyber Secur Beijing 100093 Peoples R China Univ Essex Sch Comp Sci & Elect Engn Colchester CO4 3SQ Essex England
Inspired by the robustness and efficiency of the capped nuclear norm, in this paper, we apply it to 3D tensor applications and propose a novel low-rank tensor completion method via tensor singular value decomposition ... 详细信息
来源: 评论
A fast correction approach to tensor robust principal component analysis
收藏 引用
APPLIED MATHEMATICAL MODELLING 2024年 128卷 195-219页
作者: Zhang, Zhechen Liu, Sanyang Lin, Zhiping Xue, Jize Liu, Lixia Xidian Univ Sch Math & Stat Xian 710126 Peoples R China Nanyang Technol Univ Elect & Elect Engn Singapore 639798 Singapore Xian Univ Posts & Telecommun Sch Commun & Informat Engn Xian 710121 Shaanxi Peoples R China
tensor robust principal component analysis (TRPCA) is a useful approach for obtaining low-rank data corrupted by noise or outliers. However, existing TRPCA methods face certain challenges when it comes to estimating t... 详细信息
来源: 评论
tensor total variation regularised low-rank approximation framework for video deraining
收藏 引用
IET IMAGE PROCESSING 2020年 第14期14卷 3602-3612页
作者: Baiju, P. S. Jayan, P. Deepak George, Sudhish N. Natl Inst Technol Calicut Dept Elect & Commun Engn Calicut Kerala India
Outdoor monitoring systems are known to exhibit better performance under normal weather conditions, while it lacks effectiveness under inclement conditions. Often video footage captured by the camera under rainy condi... 详细信息
来源: 评论
CONTINUITY, DIFFERENTIABILITY AND SEMISMOOTHNESS OF GENERALIZED tensor FUNCTIONS
收藏 引用
JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION 2021年 第6期17卷 3525-3550页
作者: Li, Xia Wang, Yong Huang, Zheng-Hai Tianjin Univ Sch Math Tianjin 300350 Peoples R China
A large number of real-world problems can be transformed into mathematical problems by means of third-order real tensors. Recently, as an extension of the generalized matrix function, the generalized tensor function o... 详细信息
来源: 评论
Improved Robust tensor Principal Component Analysis via Low-Rank Core Matrix
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2018年 第6期12卷 1378-1389页
作者: Liu, Yipeng Chen, Longxi Zhu, Ce Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Sichuan Peoples R China
Robust principal component analysis (RPCA) has been widely used for many data analysis problems in matrix data. Robust tensor principal component analysis (RTPCA) aims to extract the low rank and sparse components of ... 详细信息
来源: 评论