咨询与建议

限定检索结果

文献类型

  • 666 篇 期刊文献
  • 571 篇 会议
  • 258 篇 学位论文
  • 24 册 图书
  • 3 篇 资讯
  • 1 篇 科技报告

馆藏范围

  • 1,523 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,298 篇 工学
    • 898 篇 计算机科学与技术...
    • 426 篇 软件工程
    • 332 篇 控制科学与工程
    • 253 篇 电气工程
    • 192 篇 机械工程
    • 176 篇 信息与通信工程
    • 66 篇 仪器科学与技术
    • 48 篇 交通运输工程
    • 38 篇 电子科学与技术(可...
    • 34 篇 网络空间安全
    • 33 篇 环境科学与工程(可...
    • 31 篇 测绘科学与技术
    • 29 篇 材料科学与工程(可...
    • 26 篇 动力工程及工程热...
    • 22 篇 土木工程
    • 19 篇 安全科学与工程
    • 17 篇 地质资源与地质工...
    • 17 篇 石油与天然气工程
  • 332 篇 管理学
    • 320 篇 管理科学与工程(可...
    • 21 篇 图书情报与档案管...
  • 165 篇 理学
    • 41 篇 数学
    • 35 篇 物理学
    • 31 篇 生物学
    • 23 篇 化学
    • 20 篇 地球物理学
    • 17 篇 系统科学
  • 68 篇 医学
    • 48 篇 临床医学
  • 33 篇 农学
  • 28 篇 教育学
    • 25 篇 教育学
  • 24 篇 艺术学
    • 22 篇 设计学(可授艺术学...
  • 18 篇 经济学
    • 18 篇 应用经济学
  • 12 篇 法学
  • 5 篇 文学
  • 2 篇 哲学
  • 2 篇 军事学
  • 1 篇 历史学

主题

  • 1,523 篇 tensorflow
  • 291 篇 deep learning
  • 192 篇 machine learning
  • 181 篇 深度学习
  • 145 篇 keras
  • 133 篇 卷积神经网络
  • 101 篇 python
  • 69 篇 cnn
  • 67 篇 neural networks
  • 66 篇 convolutional ne...
  • 60 篇 object detection
  • 53 篇 artificial intel...
  • 53 篇 opencv
  • 51 篇 lstm
  • 50 篇 convolutional ne...
  • 45 篇 computer vision
  • 45 篇 机器学习
  • 44 篇 neural network
  • 41 篇 神经网络
  • 39 篇 人工智能

机构

  • 58 篇 brno university ...
  • 12 篇 北京邮电大学
  • 9 篇 上海工程技术大学
  • 9 篇 电子科技大学
  • 8 篇 东南大学
  • 8 篇 南京大学
  • 8 篇 ohio state univ ...
  • 7 篇 吉林大学
  • 6 篇 长安大学
  • 6 篇 西安电子科技大学
  • 5 篇 华中科技大学
  • 5 篇 google res mount...
  • 5 篇 上海理工大学
  • 5 篇 中北大学
  • 5 篇 华北水利水电大学
  • 5 篇 南京工程学院
  • 5 篇 西安工程大学
  • 5 篇 武汉大学
  • 5 篇 浙江大学
  • 5 篇 南开大学

作者

  • 8 篇 awan ammar ahmad
  • 7 篇 subramoni hari
  • 6 篇 jain arpan
  • 4 篇 rajalingappaa sh...
  • 4 篇 刘俊利
  • 4 篇 张玉志
  • 4 篇 liu jun-li
  • 4 篇 孙羽菲
  • 4 篇 li qi
  • 4 篇 chen yi-fan
  • 4 篇 zhang jun
  • 4 篇 dadios elmer p.
  • 4 篇 王磊
  • 4 篇 rafique m. musta...
  • 3 篇 wang lei
  • 3 篇 dong qifei
  • 3 篇 gordienko yuri
  • 3 篇 lu tianjian
  • 3 篇 arif moiz
  • 3 篇 bui dieu tien

语言

  • 925 篇 英文
  • 579 篇 中文
  • 18 篇 其他
  • 1 篇 日文
检索条件"主题词=tensorflow"
1523 条 记 录,以下是1-10 订阅
排序:
tensorflow  1
收藏 引用
2018年
作者: Rezaul Karim
Learn how to solve real life problems using different methods like logic regression, random forests and SVM's with tensorflow. Key Features Understand predictive analytics along with its challenges and best practi... 详细信息
来源: 评论
Studying the Impact of tensorflow and PyTorch Bindings on Machine Learning Software Quality
收藏 引用
ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY 2025年 第1期34卷 1-31页
作者: Li, Hao Rajbahadur, Gopi krishnan Bezemer, Cor-paul Univ Alberta Analyt Software GAmes & Repository Data ASGAARD La Edmonton AB Canada Huawei Canada Ctr Software Excellence Kingston ON Canada
Bindings for machine learning frameworks (such as tensorflow and PyTorch) allow developers to integrate a framework's functionality using a programming language different from the framework's default language ... 详细信息
来源: 评论
Cover Crop Biomass Predictions with Unmanned Aerial Vehicle Remote Sensing and tensorflow Machine Learning
收藏 引用
DRONES 2025年 第2期9卷 131-131页
作者: Poudel, Aakriti Burns, Dennis Adhikari, Rejina Duron, Dulis Hendrix, James Gentimis, Thanos Tubana, Brenda Setiyono, Tri Louisiana State Univ Sch Plant Environm Soil Sci Baton Rouge LA 70803 USA Louisiana State Univ Agr Ctr NE Res Stn St Joseph LA 71366 USA Louisiana State Univ Dept Expt Stat Baton Rouge LA 70803 USA
The continuous assessment of cover crop growth throughout the season is a crucial baseline observation for making informed crop management decisions and sustainable farming operation. Precision agriculture techniques ... 详细信息
来源: 评论
Tensor Train Decomposition on tensorflow (T3F)
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2020年 第1期21卷 1-7页
作者: Novikov, Alexander Izmailov, Pavel Khrulkov, Valentin Figurnov, Michael Oseledets, Ivan Natl Res Univ Higher Sch Econ Moscow Russia RAS Inst Numer Math Moscow Russia Cornell Univ Ithaca NY USA Skolkovo Inst Sci & Technol Moscow Russia
Tensor Train decomposition is used across many branches of machine learning. We present T3F a library for Tensor Train decomposition based on tensorflow. T3F supports GPU execution, batch processing, automatic differe... 详细信息
来源: 评论
tensorflow-Based Automatic Personality Recognition Used in Asynchronous Video Interviews
收藏 引用
IEEE ACCESS 2019年 7卷 61018-61023页
作者: Suen, Hung-Yue Hung, Kuo-En Lin, Chien-Liang Natl Taiwan Normal Univ Dept Technol Applicat & Human Resource Dev Taipei 106 Taiwan Natl Chengchi Univ Dept Management Informat Syst Taipei 116 Taiwan
With the development of artificial intelligence (AI), the automatic analysis of video interviews to recognize individual personality traits has become an active area of research and has applications in personality com... 详细信息
来源: 评论
KHNN: Hypercomplex-valued neural networks computations via Keras using tensorflow and PyTorch
收藏 引用
SoftwareX 2025年 30卷
作者: Agnieszka Niemczynowicz Radosław A. Kycia Faculty of Computer Science and Telecommunications Cracow University of Technology Warszawska 24 Cracow PL31-155 Poland
Neural networks that utilize algebras more advanced than real numbers, such as hypercomplex numbers, can outperform traditional models in certain applications, usually, in the number of training parameters giving the ... 详细信息
来源: 评论
Optimal distributed parallel algorithms for deep learning framework tensorflow
收藏 引用
APPLIED INTELLIGENCE 2022年 第4期52卷 3880-3900页
作者: Xie, Yuanlun He, Majun Ma, Tingsong Tian, Wenhong Univ Elect Sci & Technol China Sch Informat & Software Engn Chengdu Peoples R China
Since its release, the tensorflow framework has been widely used in various fields due to its advantages in deep learning. However, it is still at its early state. Its native distributed implementation has difficulty ... 详细信息
来源: 评论
The research of virtual face based on Deep Convolutional Generative Adversarial Networks using tensorflow
收藏 引用
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS 2019年 521卷 667-680页
作者: Liu, Shouqiang Yu, Mengjing Li, Miao Xu, Qingzhen South China Normal Univ Guangzhou Sch Phys & Telecommun Engn Guangzhou Guangdong Peoples R China South China Normal Univ Guangzhou Sch Comp Sci Guangzhou Guangdong Peoples R China
Since Generative Adversarial Nets (GANs) has been proposed in 2014, it has become one of the most popular hot topics. Deep Convolutional Generative Adversarial Networks (DCGAN) is greatly promoted the development and ... 详细信息
来源: 评论
Accelerating geostatistical seismic inversion using tensorflow: A heterogeneous distributed deep learning framework
收藏 引用
COMPUTERS & GEOSCIENCES 2019年 第Mar.期124卷 37-45页
作者: Liu, Mingliang Grana, Dario Univ Wyoming Dept Geol & Geophys 1000 E Univ Ave Laramie WY 82071 USA
Geostatistical seismic inversion is one of emerging technologies in reservoir characterization and reservoir uncertainty quantification. However, the challenge of intensive computation often restricts its application ... 详细信息
来源: 评论
TfELM: Extreme Learning Machines framework with Python and tensorflow
收藏 引用
SOFTWAREX 2024年 27卷
作者: Struniawski, Karol Kozera, Ryszard Warsaw Univ Life Sci SGGW Inst Informat Technol ul Nowoursynowska 166 PL-02787 Warsaw Poland Univ Western Australia Sch Phys Math & Comp 35 Stirling Highway Perth WA 6009 Australia
TfELM introduces an innovative Python framework leveraging tensorflow for Extreme Learning Machines (ELMs), offering a comprehensive suite for diverse machine learning (ML) tasks. Existing solutions in the ELM landsca... 详细信息
来源: 评论