In this paper, we try to systematically study how to perform doctor recommendation in medical social net- works (MSNs). Specifically, employing a real-world medical dataset as the source in our work, we propose iBol...
详细信息
In this paper, we try to systematically study how to perform doctor recommendation in medical social net- works (MSNs). Specifically, employing a real-world medical dataset as the source in our work, we propose iBole, a novel hybrid multi-layer architecture, to solve this problem. First, we mine doctor-patient relationships/ties via a time-constraint probability factorgraphmodel (TPFG). Second, we extract network features for ranking nodes. Finally, we propose RWR- model, a doctor recommendation model via the random walk with restart method. Our real-world experiments validate the effectiveness of the proposed methods. Experimental results show that we obtain good accuracy in mining doctor-patient relationships from the network, and the doctor recommendation performance is better than that of the baseline algorithms: traditional Ranking SVM (RSVM) and the individual doctor recommendation model (IDR-model). The results of our RWR-model are more reasonable and satisfactory than those of the baseline approaches.
暂无评论