咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 209 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 209 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 190 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=training algorithm"
209 条 记 录,以下是11-20 订阅
排序:
Nonrecursive filter training algorithm  7
Nonrecursive filter training algorithm
收藏 引用
7th International Conference of the Experience of Designing and Application of CAD Systems in Microelectronics
作者: Mykhalchan, V
来源: 评论
Modifications of the Givens training algorithm for Artificial Neural Networks  18th
Modifications of the Givens Training Algorithm for Artificia...
收藏 引用
18th International Conference on Artificial Intelligence and Soft Computing (ICAISC)
作者: Bilski, Jaroslaw Kowalczyk, Bartosz Cader, Andrzej Czestochowa Tech Univ Inst Computat Intelligence Czestochowa Poland Univ Social Sci Informat Technol Inst Lodz Poland Clark Univ Worcester MA 01610 USA
The Givens algorithm is a supervised training method for neural networks. This paper presents several optimization techniques that could be applied on the top of the Givens algorithm. First, the classic variant of the... 详细信息
来源: 评论
The Improved training algorithm of Back Propagation Neural Network with Self-adaptive Learning Rate
The Improved Training Algorithm of Back Propagation Neural N...
收藏 引用
International Conference on Computational Intelligence and Natural Computing
作者: Li, Yong Fu, Yang Li, Hui Zhang, Si-Wen NE Dianli Univ Sch Energy Resources & Mech Engn Jilin Peoples R China
This paper addresses the questions of improving convergence performance for back propagation (BP) neural network. For traditional BP neural network algorithm, the learning rate selection is depended on experience and ... 详细信息
来源: 评论
Improved SMPS Modeling for Photovoltaic Applications by a Novel Neural Paradigm with Hamiltonian-Based training algorithm  5
Improved SMPS Modeling for Photovoltaic Applications by a No...
收藏 引用
5th International Conference on Clean Electrical Power (ICCEP)
作者: Bonanno, F. Capizzi, G. Lo Sciuto, G. Univ Catania Dept Elect Elect & Informat Engn I-95124 Catania Italy Univ Rome Tre Dept Engn I-00146 Rome Italy
This paper discuss as the dynamics of a SMPS can be investigated by recurrent neural network (RNN) based models with an Hamiltonian formulation and function used for the training, so leading to a novel paradigm that w... 详细信息
来源: 评论
A Framework for Selection of training algorithm of Neuro-Statistic Model for Prediction of Pig Breeds in India
收藏 引用
VIETNAM JOURNAL OF COMPUTER SCIENCE 2021年 第1期8卷 153-175页
作者: Mandal, Satyendra Nath Ghosh, Pritam Shit, Nanigopal Hajra, Dilip Kumar Banik, Santanu Kalyani Govt Engn Coll Dept Informat Technol Nadia 741235 W Bengal India Uttar Banga Krishi Viswavidyalaya Dept Agron Cooch Behar 736165 W Bengal India ICAR Natl Res Ctr Pig Gauhati 781131 Assam India
Various training algorithms are used in artificial neural networks for updating the weights during training the network. But, the selection of the appropriate training algorithm is dependent on the input-output mappin... 详细信息
来源: 评论
Stock Market Prediction Using an Improved training algorithm of Neural Network  2
Stock Market Prediction Using an Improved Training Algorithm...
收藏 引用
2nd International Conference on Electrical, Computer & Telecommunication Engineering (ICECTE)
作者: Billah, Mustain Waheed, Sajjad Hanifa, Abu Mawlana Bhashani Sci & Technol Univ Dept Informat & Commun Technol Tangail Bangladesh
Predicting closing stock price accurately is an challenging task. Computer aided systems have been proved to be helpful tool for stock prediction such as Artificial Neural Network( ANN), Adaptive Neuro Fuzzy Inference... 详细信息
来源: 评论
Adaptive Equalizer training algorithm to Correct for Frequency Dispersion in Transionospheric Radio Channels
Adaptive Equalizer Training Algorithm to Correct for Frequen...
收藏 引用
Wave Electronics and its Application in Information and Telecommunication Systems (WECONF)
作者: Ivanov, V. A. Kislitsin, A. A. Ivanov, D., V Chernov, A. A. Ovchinnikov, V. V. Volga State Univ Technol Yoshkar Ola Russia
We have developed a training algorithm for device that implements the method of frequency dispersion correction supported by the full-scale measurements in the transionospheric radio communication channels. It uses GN... 详细信息
来源: 评论
An Enhanced Swarm Intelligence based training algorithm for RBF Neural Networks in Function Approximation  2
An Enhanced Swarm Intelligence based Training Algorithm for ...
收藏 引用
2014 Second World Conference on Complex Systems (WCCS)
作者: Salem, Mohammed Zingla, Meriem Amina Khelfi, Mohamed Faycal Univ Mascara Fac Sci & Technol Mascara Algeria Univ Carthage LISI Res Lab INSAT Tunis Tunisia Univ Fac Appl & Exact Sci Oran Algeria
This paper is dedicated to the presentation of enhanced swarm intelligence based training algorithm for Radial basis functions neural networks. The proposed training algorithm (ABC-PP) is hybridization between the Art... 详细信息
来源: 评论
Modulation spectrum-constrained trajectory training algorithm for GMM-based Voice Conversion  40
Modulation spectrum-constrained trajectory training algorith...
收藏 引用
40th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2015
作者: Takamichi, Shinnosuke Toda, Tomoki Black, Alan W. Nakamura, Satoshi Japan United States
This paper presents a novel training algorithm for Gaussian Mixture Model (GMM)-based Voice Conversion (VC). One of the advantages of GMM-based VC is computationally efficient conversion processing enabling to achieve... 详细信息
来源: 评论
training algorithm to deceive Anti-Spoofing Verification for DNN-based speech synthesis
Training algorithm to deceive Anti-Spoofing Verification for...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Yuki Saito Shinnosuke Takamichi Hiroshi Saruwatari Graduate School of Information Science and Technology The University of Tokyo 7-3-1 Hongo Bunkyo-ku 113-8656 Japan
This paper proposes a novel training algorithm for high-quality Deep Neural Network (DNN)-based speech synthesis. The parameters of synthetic speech tend to be over-smoothed, and this causes significant quality degrad... 详细信息
来源: 评论