咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 209 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 209 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 190 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=training algorithm"
209 条 记 录,以下是61-70 订阅
排序:
training GENERATIVE ADVERSARIAL NETWORKS WITH WEIGHTS  27
TRAINING GENERATIVE ADVERSARIAL NETWORKS WITH WEIGHTS
收藏 引用
27th European Signal Processing Conference (EUSIPCO)
作者: Pantazis, Yannis Paul, Dipjyoti Fasoulakis, Michail Stylianou, Yannis FORTH Inst Appl & Computat Math Iraklion Greece Univ Crete Dept Comp Sci Iraklion Greece FORTH Inst Comp Sci Iraklion Greece
The impressive success of Generative Adversarial Networks (GANs) is often overshadowed by the difficulties in their training Despite the continuous efforts and improvements, there are still open issues regarding their... 详细信息
来源: 评论
Architecture optimization, training convergence and network estimation robustness of a fully connected recurrent neural network
Architecture optimization, training convergence and network ...
收藏 引用
作者: Wang, Xiaoyu Clemson University
学位级别:Ph.D.
Recurrent neural networks (RNN) have been rapidly developed in recent years. Applications of RNN can be found in system identification, optimization, image processing, pattern reorganization, classification, clusterin... 详细信息
来源: 评论
The quick method of neural network training
The quick method of neural network training
收藏 引用
International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science (TCSET 2002)
作者: Dubrovin, V Subbotin, S Zaporozhye Natl Tech Univ UA-69063 Zaporozhe Ukraine
The algorithm for training of neural networks allowing to increase convergence of network training is developed. The results of experiments on practical problems solving on the basis of proposed algorithm are shown.
来源: 评论
Robust training of Microwave Neural Network Models Using Combined Global/Local Optimization Techniques
Robust Training of Microwave Neural Network Models Using Com...
收藏 引用
2008 IEEE MTT-S International Microwave Symposium Digest
作者: Ninomiya, Hiroshi Wan, Shan Kabir, Humayun Zhang, Xin Zhang, Q. J. Shonan Inst Technol Dept Informat Sci Fujisawa Kanagawa 2518511 Japan Carleton Univ Dept Elect Ottawa ON K1S 5B6 Canada
We present a new technique for training microwave neural network models. The proposed technique combines quasi-Newton algorithm with a recent global optimization algorithm called Particle Swarm Optimization (PSO). The... 详细信息
来源: 评论
A training method for SpikeProp without redundant spikes -Removing unnecessary sub-connections during training-  12
A training method for SpikeProp without redundant spikes -Re...
收藏 引用
12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)
作者: Nakayama, Takutoshi Matsumoto, Takashi Takase, Haruhiko Kawanaka, Hiroharu Tsuruoka, Shinji Mie Univ Grad Sch Engn Tsu Mie 5148507 Japan Mie Univ Tsu Mie 5148507 Japan
SpikeProp, which is proposed by Bohte and extended by Booij, is a type of multi-layer networks of spiking neurons. Our research group has proposed a training algorithm for SpikeProp without redundant output spikes. Ho... 详细信息
来源: 评论
Efficient Serial and Parallel SVM training using Coordinate Descent
Efficient Serial and Parallel SVM Training using Coordinate ...
收藏 引用
IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)
作者: Liossis, Emmanuel Natl Tech Univ Athens Sch Elect & Comp Engn Intelligent Syst Lab Athens Greece
Eliminating the bias term of the Support Vector Machine (SVM) classifier permits substancial simplification to training algorithms. Using this elimination, the optimization invloved in training can be decomposed to up... 详细信息
来源: 评论
Evaluating the training Dynamics of a CMOS based Synapse
Evaluating the Training Dynamics of a CMOS based Synapse
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Ghani, Arfan McDaid, Liam J. Belatreche, Ammar Kelly, Peter Hall, Steve Dowrick, Tom Huang, Shou Marsland, John Smith, Andy Univ Ulster Intelligent Syst Res Ctr Magee Campus Derry BT48 7JL North Ireland Univ Liverpool Liverpool L693GJ Merseyside England
Recent work by the authors proposed compact low power synapses in hardware, based on the charge-coupling principle, that can be configured to yield a static or dynamic response. The focus of this work is to investigat... 详细信息
来源: 评论
Using Particle Swarm Optimization in training Neural Network for Indoor Field Strength Prediction
Using Particle Swarm Optimization in Training Neural Network...
收藏 引用
51st International Symposium ELMAR
作者: Vilovic, Ivan Burum, Niksa Milic, Dorde Univ Dubrovnik Dubrovnik Croatia
This paper presents a comparison of results obtained from neural network training by backpropagation and particle swarm optimization (PSO) algorithms. The neural network model has been developed for field strength pre... 详细信息
来源: 评论
A Novel Quasi-Newton-Based training Using Nesterov's Accelerated Gradient for Neural Networks  25th
A Novel Quasi-Newton-Based Training Using Nesterov's Acceler...
收藏 引用
25th International Conference on Artificial Neural Networks (ICANN)
作者: Ninomiya, Hiroshi Shonan Inst Technol Dept Informat Sci Fujisawa Kanagawa Japan
Neural networks have been recognized as a useful tool for the function approximation problems with high-nonlinearity [1]. training is the most important step in developing a neural network model. Gradient based algori... 详细信息
来源: 评论
Error assessment of laser cutting predictions by semi-supervised learning
收藏 引用
Journal of Central South University 2014年 第10期21卷 3736-3745页
作者: Mustafa Zaidi Imran Amin Ahmad Hussain Nukman Yusoff Department of Computing Shaheed Zulfikar Ali Bhutto Institute of Science & Technology (SZABIST) Department of Nuclear Engineering King Abdulaziz University Manufacturing Systems Integration Department of Mechanical Engineering University of Malaya
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... 详细信息
来源: 评论