咨询与建议

限定检索结果

文献类型

  • 113 篇 期刊文献
  • 94 篇 会议
  • 2 篇 学位论文

馆藏范围

  • 209 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 191 篇 工学
    • 121 篇 计算机科学与技术...
    • 71 篇 电气工程
    • 33 篇 控制科学与工程
    • 26 篇 信息与通信工程
    • 16 篇 软件工程
    • 13 篇 仪器科学与技术
    • 10 篇 石油与天然气工程
    • 10 篇 环境科学与工程(可...
    • 8 篇 机械工程
    • 8 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 6 篇 化学工程与技术
    • 5 篇 力学(可授工学、理...
    • 5 篇 动力工程及工程热...
    • 4 篇 建筑学
    • 4 篇 土木工程
    • 4 篇 水利工程
    • 4 篇 航空宇航科学与技...
    • 3 篇 生物工程
    • 2 篇 光学工程
  • 34 篇 理学
    • 15 篇 物理学
    • 9 篇 化学
    • 8 篇 数学
    • 6 篇 生物学
    • 2 篇 地球物理学
  • 15 篇 管理学
    • 14 篇 管理科学与工程(可...
  • 13 篇 医学
    • 11 篇 临床医学
    • 4 篇 基础医学(可授医学...
  • 3 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 209 篇 training algorit...
  • 32 篇 neural network
  • 27 篇 artificial neura...
  • 15 篇 neural networks
  • 9 篇 particle swarm o...
  • 8 篇 artificial neura...
  • 6 篇 deep learning
  • 6 篇 neural nets
  • 6 篇 machine learning
  • 6 篇 training
  • 5 篇 modeling
  • 5 篇 feature extracti...
  • 5 篇 multilayer perce...
  • 5 篇 forecasting
  • 4 篇 generative adver...
  • 4 篇 process neural n...
  • 4 篇 quasi-newton met...
  • 4 篇 power quality di...
  • 4 篇 learning (artifi...
  • 4 篇 recurrent neural...

机构

  • 3 篇 hebei univ engn ...
  • 3 篇 univ dayton dept...
  • 2 篇 lab cent lyonnai...
  • 2 篇 joint inst nucl ...
  • 2 篇 assiut univ dept...
  • 2 篇 univ calif san d...
  • 2 篇 ivanovo state un...
  • 2 篇 univ dubrovnik d...
  • 2 篇 univ tokyo grad ...
  • 2 篇 shandong univ sc...
  • 2 篇 south china univ...
  • 2 篇 univ technol com...
  • 2 篇 forth inst appl ...
  • 1 篇 govt arts coll d...
  • 1 篇 stanford univ de...
  • 1 篇 rabdan acad fac ...
  • 1 篇 univ teknol petr...
  • 1 篇 iasbs dept chem ...
  • 1 篇 dalian ocean uni...
  • 1 篇 pt pln persero e...

作者

  • 6 篇 ninomiya hiroshi
  • 5 篇 xu shaohua
  • 3 篇 gong n
  • 3 篇 taha tarek m.
  • 3 篇 liu kun
  • 3 篇 paul dipjyoti
  • 3 篇 pantazis yannis
  • 3 篇 zeng xiaoqin
  • 3 篇 hasan raqibul
  • 3 篇 mahboubi shahrza...
  • 3 篇 ng wing w. y.
  • 3 篇 bertrand-krajews...
  • 3 篇 stylianou yannis
  • 3 篇 denoeux t
  • 3 篇 takamichi shinno...
  • 2 篇 stadnik a
  • 2 篇 vilovic ivan
  • 2 篇 subbotin s
  • 2 篇 chen chen
  • 2 篇 saito yuki

语言

  • 190 篇 英文
  • 13 篇 其他
  • 6 篇 中文
检索条件"主题词=training algorithm"
209 条 记 录,以下是81-90 订阅
排序:
Recent advancement of remaining useful life prediction of lithium-ion battery in electric vehicle applications: A review of modelling mechanisms, network configurations, factors, and outstanding issues
收藏 引用
ENERGY REPORTS 2024年 11卷 4824-4848页
作者: Reza, M. S. Mannan, M. Mansor, M. Ker, Pin Jern Mahlia, T. M. Indra Hannan, M. A. Univ Tenaga Nas Dept Elect & Elect Engn Kajang 43000 Malaysia Univ Technol Sydney Sch Civil & Environm Engn Ultimo NSW 2007 Australia Sunway Univ Sch Engn & Technol Bandar Sunway 47500 Malaysia Korea Univ Sch Elect Engn Seoul 136701 South Korea
The remaining useful life (RUL) prediction of lithium -ion batteries (LIBs) plays a crucial role in battery management, safety assurance, and the anticipation of maintenance needs for reliable electric vehicle (EV) op... 详细信息
来源: 评论
A Sparse Auto Encoder Deep Process Neural Network Model and its Application
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS 2017年 第1期10卷 1116-1131页
作者: Xu Shaohua Xue Jiwei Li Xuegui Shandong Univ Sci & Technol Coll Informat Sci & Engn Qingdao 266590 Shandong Peoples R China Northeast Petr Univ Sch Comp & Informat Technol Daqing 163318 Heilongjiang Peoples R China
Aiming at the problem of time-varying signal pattern classification, a sparse auto-encoder deep process neural network (SAE-DPNN) is proposed. The input of SAE-DPNN is time-varying process signal and the output is pat... 详细信息
来源: 评论
Vocoder-free text-to-speech synthesis incorporating generative adversarial networks using low-/multi-frequency STFT amplitude spectra
收藏 引用
COMPUTER SPEECH AND LANGUAGE 2019年 58卷 347-363页
作者: Saito, Yuki Takamichi, Shinnosuke Saruwatari, Hiroshi Univ Tokyo Grad Sch Informat Sci & Technol Bunkyo Ku 7-3-1 Hongo Tokyo 1138656 Japan
This paper proposes novel training algorithms for vocoder-free text-to-speech (TTS) synthesis based on generative adversarial networks (GANs) that compensate for short-term Fourier transform (STFT) amplitude spectra i... 详细信息
来源: 评论
Freeze-drying behaviour prediction of button mushrooms using artificial neural network and comparison with semi-empirical models
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2019年 第11期31卷 7257-7268页
作者: Tarafdar, Ayon Shahi, Navin Chandra Singh, Anupama Natl Inst Food Technol Entrepreneurship & Managem Dept Food Engn Sonipat 131028 Haryana India GB Pant Univ Agr & Technol Dept Postharvest Proc & Food Engn Pantnagar 263145 Uttar Pradesh India
The application of artificial neural networks (ANN) in the freeze-drying of button mushrooms has been investigated. Networks with a single hidden layer, different training algorithms and complexity in terms of the num... 详细信息
来源: 评论
Robust fuzzy regression analysis using neural networks
收藏 引用
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS 2008年 第4期16卷 579-598页
作者: Nasrabadi, Ebrahim Hashemi, S. Mehdi Amir Kabir Univ Technol Dept Comp Sci Tehran Iran
Some neural network related methods have been applied to nonlinear fuzzy regression analysis by several investigators. The performance of these methods will significantly worsen when the outliers exist in the training... 详细信息
来源: 评论
Adaptive fuzzy modeling versus artificial neural networks
收藏 引用
ENVIRONMENTAL MODELLING & SOFTWARE 2008年 第2期23卷 215-224页
作者: Wieland, Ralf Mirschel, Wilfried Inst Landscape Syst Anal Leibniz Ctr Agr Landscape Res D-15374 Muencheberg Germany
In this paper two areas of soft computing (fuzzy modeling and artificial neural networks) are discussed. Based on the fundamental mathematical similarity of fuzzy techniques and radial basis function networks a new tr... 详细信息
来源: 评论
The No-Prop algorithm: A new learning algorithm for multilayer neural networks
收藏 引用
NEURAL NETWORKS 2013年 37卷 180-186页
作者: Widrow, Bernard Greenblatt, Aaron Kim, Youngsik Park, Dookun Stanford Univ Dept Elect Engn ISL Stanford CA 94305 USA
A new learning algorithm for multilayer neural networks that we have named No-Propagation (No-Prop) is hereby introduced. With this algorithm, the weights of the hidden-layer neurons are set and fixed with random valu... 详细信息
来源: 评论
A New Multiplicative Seasonal Neural Network Model Based on Particle Swarm Optimization
收藏 引用
NEURAL PROCESSING LETTERS 2013年 第3期37卷 251-262页
作者: Aladag, Cagdas Hakan Yolcu, Ufuk Egrioglu, Erol Hacettepe Univ Fac Sci Dept Stat TR-06800 Ankara Turkey Giresun Univ Fac Arts & Sci Dept Stat TR-28000 Giresun Turkey Ondokuz Mayis Univ Fac Arts & Sci Dept Stat TR-55139 Samsun Turkey
In recent years, artificial neural networks (ANNs) have been commonly used for time series forecasting by researchers from various fields. There are some types of ANNs and feed forward neural networks model is one of ... 详细信息
来源: 评论
Environment prediction for a mobile robot in a dynamic environment
收藏 引用
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION 1997年 第6期13卷 862-872页
作者: Chang, CC Song, KT Natl Chiao Tung Univ Dept Control Engn Hsinchu Taiwan Natl Chiao Tung Univ Dept Elect & Control Engn Hsinchu Taiwan
The problem of navigating a mobile robot among moving obstacles is usually solved on the condition of knowing the velocity of obstacles. However, it is difficult to provide such information to a robot in real time. In... 详细信息
来源: 评论
BASS: Broad Network Based on Localized Stochastic Sensitivity
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024年 第2期35卷 1681-1695页
作者: Wang, Ting Zhang, Mingyang Zhang, Jianjun Ng, Wing W. Y. Chen, C. L. Philip South China Univ Technol Sch Med Guangzhou Peoples Hosp 1 Dept Radiol Guangzhou 510006 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangdong Prov Key Lab Computat Intelligence & Cy Guangzhou 510006 Peoples R China Pazhou Lab Brain & Affect Cognit Res Ctr Guangzhou 510335 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Dalian Maritime Univ Nav Coll Dalian 116026 Peoples R China
The training of the standard broad learning system (BLS) concerns the optimization of its output weights via the minimization of both training mean square error (MSE) and a penalty term. However, it degrades the gener... 详细信息
来源: 评论