We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three ...
详细信息
We introduce a generalized value function of a mixed-integer program, which is simultaneously parameterized by its objective and right-hand side. We describe its fundamental properties, which we exploit through three algorithms to calculate it. We then show how this generalized value function can be used to reformulate two classes of mixed-integer optimization problems: two-stage stochastic mixed-integerprogramming and multifollower bilevel mixed-integerprogramming. For both of these problem classes, the generalized value function approach allows the solution of instances that are significantly larger than those solved in the literature in terms of the total number of variables and number of scenarios.
暂无评论