咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 segmentation
  • 1 篇 image matching
  • 1 篇 printed text rec...
  • 1 篇 modelling langua...
  • 1 篇 image segmentati...
  • 1 篇 abstraction
  • 1 篇 segmentation alg...
  • 1 篇 text detection
  • 1 篇 tree searching
  • 1 篇 sorting algorith...
  • 1 篇 recurrent neural...
  • 1 篇 sub-string match
  • 1 篇 hypothesize-and-...
  • 1 篇 recognition erro...
  • 1 篇 best-first searc...
  • 1 篇 transforms
  • 1 篇 bidirectional lo...
  • 1 篇 deep blstm
  • 1 篇 classification a...
  • 1 篇 language model

机构

  • 1 篇 indian inst tech...

作者

  • 1 篇 ray anupama
  • 1 篇 chaudhury santan...
  • 1 篇 rajeswar sai

语言

  • 1 篇 英文
检索条件"主题词=unicode sequences"
1 条 记 录,以下是1-10 订阅
排序:
A hypothesize-and-verify framework for Text Recognition using Deep Recurrent Neural Networks  13
A hypothesize-and-verify framework for Text Recognition usin...
收藏 引用
13th IAPR International Conference on Document Analysis and Recognition (ICDAR)
作者: Ray, Anupama Rajeswar, Sai Chaudhury, Santanu Indian Inst Technol Delhi Dept Elect Engn Delhi India
Deep LSTM is an ideal candidate for text recognition. However text recognition involves some initial image processing steps like segmentation of lines and words which can induce error to the recognition system. Withou... 详细信息
来源: 评论