咨询与建议

限定检索结果

文献类型

  • 14 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 21 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 18 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 3 篇 测绘科学与技术
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 动力工程及工程热...
    • 1 篇 控制科学与工程
    • 1 篇 环境科学与工程(可...
  • 4 篇 理学
    • 2 篇 地球物理学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 4 篇 医学
    • 4 篇 临床医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 21 篇 unsupervised sem...
  • 4 篇 contrastive lear...
  • 2 篇 semantic segment...
  • 2 篇 autonomous drivi...
  • 2 篇 self-supervised ...
  • 2 篇 knowledge distil...
  • 2 篇 point cloud
  • 2 篇 radar sounder
  • 2 篇 image processing
  • 2 篇 convolutional ne...
  • 2 篇 unsupervised lea...
  • 1 篇 computer science
  • 1 篇 multimodal learn...
  • 1 篇 end-to-end train...
  • 1 篇 kidney
  • 1 篇 clustering
  • 1 篇 transformer
  • 1 篇 feature enhancem...
  • 1 篇 grasping rectang...
  • 1 篇 pseudo labeling

机构

  • 2 篇 beihang univ peo...
  • 2 篇 czech tech univ ...
  • 2 篇 valeo ai
  • 1 篇 fdn bruno kessle...
  • 1 篇 shanghai key lab...
  • 1 篇 jiangsu univ tec...
  • 1 篇 tsinghua univ de...
  • 1 篇 tokyo inst techn...
  • 1 篇 hohai univ coll ...
  • 1 篇 fdn bruno kessle...
  • 1 篇 univ macau dept ...
  • 1 篇 kyutai
  • 1 篇 tsinghua univ ts...
  • 1 篇 nanjing univ sta...
  • 1 篇 seoul natl univ ...
  • 1 篇 tsinghua univ sh...
  • 1 篇 yonsei univ
  • 1 篇 univ illinois de...
  • 1 篇 benha univ shoub...
  • 1 篇 cent south univ ...

作者

  • 2 篇 bursuc andrei
  • 2 篇 gidaris spyros
  • 2 篇 perez patrick
  • 2 篇 sivic josef
  • 2 篇 bovolo francesca
  • 2 篇 donini elena
  • 2 篇 simeoni oriane
  • 2 篇 vobecky antonin
  • 2 篇 hurych david
  • 1 篇 zhang lin
  • 1 篇 xu zhuoming
  • 1 篇 guan yuchen
  • 1 篇 chen junliang
  • 1 篇 nadaoka kazuo
  • 1 篇 liu mingyuan
  • 1 篇 kushwaha vandana
  • 1 篇 nakamura takashi
  • 1 篇 yang hua
  • 1 篇 kang byeongkeun
  • 1 篇 liang xiaohui

语言

  • 21 篇 英文
检索条件"主题词=unsupervised semantic segmentation"
21 条 记 录,以下是1-10 订阅
排序:
unsupervised semantic segmentation of Urban Scenes via Cross-Modal Distillation
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 第6期133卷 3519-3541页
作者: Vobecky, Antonin Hurych, David Simeoni, Oriane Gidaris, Spyros Bursuc, Andrei Perez, Patrick Sivic, Josef Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague Czech Republic Valeo Ai Paris France Czech Tech Univ Fac Elect Engn Prague Czech Republic Kyutai Paris France
semantic image segmentation models typically require extensive pixel-wise annotations, which are costly to obtain and prone to biases. Our work investigates learning semantic segmentation in urban scenes without any m... 详细信息
来源: 评论
unsupervised semantic segmentation with Feature Enhancement for Few-shot Image Classification  10
Unsupervised Semantic Segmentation with Feature Enhancement ...
收藏 引用
10th International Conference on Advanced Cloud and Big Data (CBD)
作者: Li, Xiang Xu, Zhuoming Xu, Qi Tang, Yan Hohai Univ Coll Comp & Informat Nanjing Peoples R China
Image classification is a typical task in big data applications. As a few-shot learning (FSL) task, the few-shot image classification attempts to learn a new visual concept from limited labelled images. The existing f... 详细信息
来源: 评论
unsupervised semantic segmentation of radar sounder data using contrastive learning  28
Unsupervised semantic segmentation of radar sounder data usi...
收藏 引用
Conference on Image and Signal Processing for Remote Sensing XXVIII
作者: Donini, Elena Amico, Mattia Bruzzone, Lorenzo Bovolo, Francesca Fdn Bruno Kessler Ctr Digital Soc Via Sommarive 18 I-38123 Trento Italy Univ Trento Dept Informat Engn & Comp Sci Sommarive 5 I-38123 Trento Italy
Radar Sounders (RSs) are active sensors widely used for planetary exploration and Earth observation that probe the subsurface in a non-intrusive way by acquiring vertical profiles, called radargrams. Radargrams contai... 详细信息
来源: 评论
unsupervised semantic segmentation OF KIDNEYS USING RADIAL TRANSFORM SAMPLING ON LIMITED IMAGES
UNSUPERVISED SEMANTIC SEGMENTATION OF KIDNEYS USING RADIAL T...
收藏 引用
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
作者: Salehinejad, Hojjat Naqvi, Sumeya Colak, Errol Barfett, Joseph Valaee, Shahrokh Univ Toronto Dept Elect & Comp Engn Toronto ON Canada Univ Toronto St Michaels Hosp Dept Med Imaging Toronto ON Canada
Efficient training of supervised deep learning models for semantic segmentation requires a massive volume of annotated data. In this paper, we propose an unsupervised semantic segmentation method through the applicati... 详细信息
来源: 评论
unsupervised semantic segmentation Through Depth-Guided Feature Correlation and Sampling
Unsupervised Semantic Segmentation Through Depth-Guided Feat...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Sick, Leon Engel, Dominik Hermosilla, Pedro Ropinski, Timo Ulm Univ Ulm Germany TU Vienna Vienna Austria
Traditionally, training neural networks to perform semantic segmentation requires expensive human-made annotations. But more recently, advances in the field of unsupervised learning have made significant progress on t... 详细信息
来源: 评论
Imbalance-Aware Discriminative Clustering for unsupervised semantic segmentation
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2024年 第10期132卷 4362-4378页
作者: Liu, Mingyuan Zhang, Jicong Tang, Wei Beihang Univ Dept Biol Sci & Med Engn Beijing 100191 Peoples R China Univ Illinois Dept Comp Sci Chicago IL 60607 USA
unsupervised semantic segmentation (USS) aims at partitioning an image into semantically meaningful segments by learning from a collection of unlabeled images. The effectiveness of current approaches is plagued by dif... 详细信息
来源: 评论
Enhancing unsupervised semantic segmentation Through Context-Aware Clustering
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2024年 26卷 10081-10093页
作者: Zhuo, Wei Wang, Yuan Chen, Junliang Deng, Songhe Wang, Zhi Shen, Linlin Zhu, Wenwu Shenzhen Univ Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Beijing 100190 Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Tsinghua Univ Shenzhen Int Grad Sch Beijing 100190 Peoples R China Shenzhen Univ Coll Comp Sci & Software Engineer ing Natl Engn Lab Big Data Syst Comp Technol Shenzhen 518060 Peoples R China Univ Nottingham Ningbo China Dept Comp Sci Ningbo 315100 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100190 Peoples R China
Despite the great progress of semantic segmentation with supervised learning, annotating large amounts of pixel-wise labels is, however, very expensive and time-consuming. To this end, unsupervised semantic Segmentati... 详细信息
来源: 评论
Learn to Rectify the Bias of CLIP for unsupervised semantic segmentation
Learn to Rectify the Bias of CLIP for Unsupervised Semantic ...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Wang, Jingyun Kang, Guoliang Beihang Univ Beijing Peoples R China Beihang Univ Zhongguancun Lab Beijing Peoples R China
Recent works utilize CLIP to perform the challenging unsupervised semantic segmentation task where only images without annotations are available. However, we observe that when adopting CLIP to such a pixel-level under... 详细信息
来源: 评论
Drive&Segment: unsupervised semantic segmentation of Urban Scenes via Cross-Modal Distillation  17th
Drive&Segment: Unsupervised Semantic Segmentation of Urban S...
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Vobecky, Antonin Hurych, David Simeoni, Oriane Gidaris, Spyros Bursuc, Andrei Perez, Patrick Sivic, Josef Czech Tech Univ Czech Inst Informat Robot & Cybernet Prague Czech Republic Valeo Ai Paris France
This work investigates learning pixel-wise semantic image segmentation in urban scenes without any manual annotation, just from the raw non-curated data collected by cars which, equipped with cameras and LiDAR sensors... 详细信息
来源: 评论
EAGLE: Eigen Aggregation Learning for Object-Centric unsupervised semantic segmentation
EAGLE: Eigen Aggregation Learning for Object-Centric Unsuper...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Kim, Chanyoung Han, Woojung Ju, Dayun Hwang, Seong Jae Yonsei Univ Seoul South Korea
semantic segmentation has innately relied on extensive pixel-level annotated data, leading to the emergence of unsupervised methodologies. Among them, leveraging self-supervised Vision Transformers for unsupervised se... 详细信息
来源: 评论