咨询与建议

限定检索结果

文献类型

  • 923 篇 期刊文献
  • 619 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,554 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,400 篇 工学
    • 949 篇 计算机科学与技术...
    • 492 篇 电气工程
    • 179 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 129 篇 软件工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 27 篇 化学工程与技术
    • 26 篇 测绘科学与技术
    • 22 篇 动力工程及工程热...
    • 22 篇 土木工程
    • 22 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 14 篇 生物工程
  • 334 篇 理学
    • 126 篇 物理学
    • 95 篇 生物学
    • 62 篇 化学
    • 53 篇 数学
    • 37 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 246 篇 医学
    • 148 篇 临床医学
    • 62 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 110 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,554 篇 variational auto...
  • 262 篇 deep learning
  • 133 篇 anomaly detectio...
  • 93 篇 machine learning
  • 61 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis
  • 26 篇 deep generative ...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 9 篇 tahan antoine
  • 9 篇 zemouri ryad
  • 8 篇 chen junghui
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,498 篇 英文
  • 42 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1554 条 记 录,以下是1131-1140 订阅
排序:
Prediction of microstructure evolution at the atomic scale by deep generative model in combination with recurrent neural networks
收藏 引用
ACTA MATERIALIA 2023年 第1期259卷
作者: Sase, Kohei Shibuta, Yasushi Univ Tokyo Dept Mat Engn 7-3-1 HongoBunkyo Ku Tokyo 1138656 Japan
A novel method to predict multi-atom cooperative phenomena at atomic scale is proposed based on a deep generative model in combination with recurrent neural network. The variational autoencoder (VAE) model successfull... 详细信息
来源: 评论
Synthesis of Synthetic Hyperspectral Images with Controllable Spectral Variability Using a Generative Adversarial Network
收藏 引用
REMOTE SENSING 2023年 第16期15卷 3919-3919页
作者: Palsson, Burkni Ulfarsson, Magnus O. Sveinsson, Johannes R. Univ Iceland Fac Elect & Comp Engn IS-105 Reykjavik Iceland
In hyperspectral unmixing (HU), spectral variability in hyperspectral images (HSIs) is a major challenge which has received a lot of attention over the last few years. Here, we propose a method utilizing a generative ... 详细信息
来源: 评论
BioDSNN: a dual-stream neural network with hybrid biological knowledge integration for multi-gene perturbation response prediction
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2024年 第1期26卷 bbae617页
作者: Tan, Yuejun Xie, Linhai Yang, Hong Zhang, Qingyuan Luo, Jinyuan Zhang, Yanchun Guangzhou Univ Cyberspace Inst Adv Technol Guangzhou 510000 Peoples R China Zhejiang Normal Univ Sch Comp Sci & Technol Jinhua 321000 Peoples R China Natl Ctr Prot Sci Beijing State Key Lab Prote Beijing 100000 Peoples R China Int Acad Phronesis Med Guangzhou 510000 Peoples R China
Studying the outcomes of genetic perturbation based on single-cell RNA-seq data is crucial for understanding genetic regulation of cells. However, the high cost of cellular experiments and single-cell sequencing restr... 详细信息
来源: 评论
Separating group- and individual-level brain signatures in the newborn functional connectome: A deep learning approach
收藏 引用
NEUROIMAGE 2024年 299卷 120806-120806页
作者: Kim, Jung-Hoon De Asis-Cruz, Josepheen Limperopoulos, Catherine Childrens Natl Developing Brain Inst 111 Michigan Ave NW Washington DC 20010 USA
Recent studies indicate that differences in cognition among individuals may be partially attributed to unique brain wiring patterns. While functional connectivity (FC)-based fingerprinting has demonstrated high accura... 详细信息
来源: 评论
Rate Controllable Learned Image Compression Based on RFL Model
Rate Controllable Learned Image Compression Based on RFL Mod...
收藏 引用
IEEE International Conference on Visual Communications and Image Processing (VCIP)
作者: Zhang, Saiping Wang, Luge Mao, Xionghui Yang, Fuzheng Wan, Shuai Xidian Univ Sch Telecommun Engn Xian Peoples R China Northwestern Polytech Univ Sch Elect & Informat Xian Peoples R China
In this paper, we propose a rate controllable image compression framework, Rate Controllable variational autoencoder (RC-VAE), based on the Rate-Feature-Level (RFL) model established through our exploration on the cor... 详细信息
来源: 评论
Active Patterns Perceived for Stochastic Video Prediction  22
Active Patterns Perceived for Stochastic Video Prediction
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Xu, Yechao Sun, Zhengxing Li, Qian Sun, Yunhan Luo, Shoutong Nanjing Univ State Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China Natl Univ Def Technol Coll Meteorol & Oceanog Changsha Hunan Peoples R China
Predicting future scenes based on historical frames is challenging, especially when it comes to the complex uncertainty in nature. We observe that there is a divergence between spatial-temporal variations of active pa... 详细信息
来源: 评论
Multi-Agent Reinforcement Learning with Clustering and Experience Sharing
收藏 引用
Procedia Computer Science 2024年 246卷 1329-1337页
作者: Kaname Inokuchi Toshiharu Sugawara Department of Computer Science and Communications Engineering Waseda University Japan
We propose a training method for a heterogeneous multi-agent system to improve the learning efficiency in sparse-reward environments. Although extensive research on multi-agent deep reinforcement learning are conducte... 详细信息
来源: 评论
Unsupervised Deep Anomaly Detection in Chest Radiographs
收藏 引用
JOURNAL OF DIGITAL IMAGING 2021年 第2期34卷 418-427页
作者: Nakao, Takahiro Hanaoka, Shouhei Nomura, Yukihiro Murata, Masaki Takenaga, Tomomi Miki, Soichiro Watadani, Takeyuki Yoshikawa, Takeharu Hayashi, Naoto Abe, Osamu Univ Tokyo Hosp Dept Computat Diagnost Radiol & Prevent Med Bunkyo Ku 7-3-1 Hongo Tokyo Japan Univ Tokyo Hosp Dept Radiol Bunkyo Ku 7-3-1 Hongo Tokyo Japan Japan Univ Econ Dept Management 3-11-25 Gojo Dazaifu Fukuoka Japan Univ Tokyo Grad Sch Med Div Radiol & Biomed Engn Bunkyo Ku 7-3-1 Hongo Tokyo Japan
The purposes of this study are to propose an unsupervised anomaly detection method based on a deep neural network (DNN) model, which requires only normal images for training, and to evaluate its performance with a lar... 详细信息
来源: 评论
Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods via Rotationally Invariant Latent Representations
收藏 引用
ACS NANO 2021年 第4期15卷 6471-6480页
作者: Kalinin, Sergei, V Zhang, Shuai Valleti, Mani Pyles, Harley Baker, David De Yoreo, James J. Ziatdinov, Maxim Univ Washington Mat Sci & Engn Seattle WA 98195 USA Pacific Northwest Natl Lab Phys Sci Div Richland WA 99354 USA Univ Tennessee Bredesen Ctr Interdisciplinary Res Knoxville TN 37996 USA Univ Washington Dept Biochem Seattle WA 98195 USA Univ Washington Inst Prot Design Seattle WA 98195 USA Univ Washington Inst Prot Design Dept Biochem Seattle WA 98195 USA Univ Washington Howard Hughes Med Inst Seattle WA 98195 USA Oak Ridge Natl Lab Ctr Nanophase Mat Sci Oak Ridge TN 37831 USA Oak Ridge Natl Lab Computat Sci & Engn Div Oak Ridge TN 37831 USA
The dynamics of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmenta... 详细信息
来源: 评论
An Efficient Prediction Method for Coronary Heart Disease Risk Based on Two Deep Neural Networks Trained on Well-Ordered Training Datasets
收藏 引用
IEEE ACCESS 2021年 9卷 135210-135223页
作者: Amarbayasgalan, Tsatsral Pham, Van-Huy Theera-Umpon, Nipon Piao, Yongjun Ryu, Keun Ho Chungbuk Natl Univ Sch Elect & Comp Engn Database & Bioinformat Lab Cheongju 28644 South Korea Ton Duc Thang Univ Fac Informat Technol Ho Chi Minh City 700000 Vietnam Chiang Mai Univ Biomed Engn Inst Chiang Mai 50200 Thailand Chiang Mai Univ Fac Engn Dept Elect Engn Chiang Mai 50200 Thailand Nankai Univ Sch Med Tianjin 300071 Peoples R China Tianjin Cent Hosp Gynecol Obstet Tianjin Key Lab Human Dev & Reprod Regulat Tianjin 300199 Peoples R China
This study proposes an efficient prediction method for coronary heart disease risk based on two deep neural networks trained on well-ordered training datasets. Most real datasets include an irregular subset with highe... 详细信息
来源: 评论