咨询与建议

限定检索结果

文献类型

  • 923 篇 期刊文献
  • 619 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,554 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,400 篇 工学
    • 949 篇 计算机科学与技术...
    • 492 篇 电气工程
    • 179 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 129 篇 软件工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 27 篇 化学工程与技术
    • 26 篇 测绘科学与技术
    • 22 篇 动力工程及工程热...
    • 22 篇 土木工程
    • 22 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 14 篇 生物工程
  • 334 篇 理学
    • 126 篇 物理学
    • 95 篇 生物学
    • 62 篇 化学
    • 53 篇 数学
    • 37 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 246 篇 医学
    • 148 篇 临床医学
    • 62 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 110 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,554 篇 variational auto...
  • 262 篇 deep learning
  • 133 篇 anomaly detectio...
  • 93 篇 machine learning
  • 61 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis
  • 26 篇 deep generative ...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 9 篇 tahan antoine
  • 9 篇 zemouri ryad
  • 8 篇 chen junghui
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,498 篇 英文
  • 42 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1554 条 记 录,以下是1401-1410 订阅
Transfer learning of the expressivity using FLOW metric learning in multispeaker text-to-speech synthesis  21
Transfer learning of the expressivity using FLOW metric lear...
收藏 引用
Interspeech Conference
作者: Kulkarni, Ajinkya Colotte, Vincent Jouvet, Denis Univ Lorraine CNRS INRIA LORIA F-54000 Nancy France
In this paper, we present a novel flow metric learning architecture in a parametric multispeaker expressive text-to-speech (TTS) system. We proposed inverse autoregressive flow (IAF) as a way to perform the variationa... 详细信息
来源: 评论
Deep Learning Based Unsupervised and Semi-supervised Classification for Keratoconus
Deep Learning Based Unsupervised and Semi-supervised Classif...
收藏 引用
International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Hallett, Nicole Yi, Kai Dick, Josef Hodge, Christopher Sutton, Gerard Wang, Yu Guang You, Jingjing Univ Sydney Sydney Eye Hosp Sydney NSW Australia Univ New South Wales Sch Math & Stat Sydney NSW Australia
The transparent cornea is the window of the eye, facilitating the entry of light rays and controlling focusing the movement of the light within the eye. The cornea is critical, contributing to 75% of the refractive po... 详细信息
来源: 评论
Semi-supervised Instance Segmentation with a Learned Shape Prior  3rd
Semi-supervised Instance Segmentation with a Learned Shape P...
收藏 引用
3rd Int Workshop on Interpretabil of Machine Intelligence in Med Image Comp / 2nd Int Workshop on Med Image Learning with Less Labels and Imperfect Data / 5th Int Workshop on Largescale Annotat of Biomed Data and Expert Label Synthesis
作者: Chen, Long Zhang, Weiwen Wu, Yuli Strauch, Martin Merhof, Dorit Rhein Westfal TH Aachen Inst Imaging & Comp Vis Aachen Germany
To date, most instance segmentation approaches are based on supervised learning that requires a considerable amount of annotated object contours as training ground truth. Here, we propose a framework that searches for... 详细信息
来源: 评论
Quantifying Common Support between Multiple Treatment Groups Using a Contrastive-VAE  6
Quantifying Common Support between Multiple Treatment Groups...
收藏 引用
6th Machine Learning for Health (ML4H) Workshop - Advancing Healthcare for All as a part of NeurIPS Conference
作者: Dai, Wangzhi Stultz, Collin M. MIT Cambridge MA 02139 USA Massachusetts Gen Hosp Boston MA 02114 USA
Estimating the effect of a given medical treatment on individual patients involves evaluating how clinical outcomes are affected by the treatment in question. Robust estimates of the treatment effect for a given patie... 详细信息
来源: 评论
Manifold for Machine Learning Assurance  42
Manifold for Machine Learning Assurance
收藏 引用
42nd IEEE/ACM International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER)
作者: Byun, Taejoon Rayadurgam, Sanjai Univ Minnesota Minneapolis MN 55455 USA
The increasing use of machine-learning (ML) enabled systems in critical tasks fuels the quest for novel verification and validation techniques yet grounded in accepted system assurance principles. In traditional syste... 详细信息
来源: 评论
Trace Data Analytics with Knowledge Distillation DM: Big Data Management and Mining  31
Trace Data Analytics with Knowledge Distillation DM: Big Dat...
收藏 引用
31st Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC)
作者: Lee, Janghwan Xiong, Wei Jang, Wonhyouk Samsung Elect Samsung Display Amer Lab San Jose CA 95134 USA Samsung Display Display Res Ctr Yongin South Korea
In this paper, we propose the "trace data analytics" for classifying fault conditions from multivariate time series sensor signals using well-known deep CNN models. In our approach, multiple sensor signals a... 详细信息
来源: 评论
Importance Weighted Adversarial variational Bayes  15th
Importance Weighted Adversarial Variational Bayes
收藏 引用
15th International Conference on Hybrid Artificial Intelligence Systems (HAIS)
作者: Gomez-Sancho, Marta Hernandez-Lobato, Daniel Univ Autonoma Madrid Comp Sci Dept Francisco Tomas & Valiente 11 E-28049 Madrid Spain
Adversarial variational Bayes (AVB) can infer the parameters of a generative model from the data using approximate maximum likelihood. The likelihood of deep generative models model is intractable. However, it can be ... 详细信息
来源: 评论
CVAD - An unsupervised image anomaly detector
收藏 引用
SOFTWARE IMPACTS 2022年 11卷
作者: Guo, Xiaoyuan Gichoya, Judy Wawira Purkayastha, Saptarshi Banerjee, Imon Emory Univ Dept Comp Sci Atlanta GA 30322 USA Emory Univ Dept Radiol & Imaging Sci Atlanta GA 30322 USA Indiana Univ Purdue Univ Sch Informat & Comp Indianapolis IN 46202 USA Arizona State Univ Sch Comp Informat & Decis Syst Engn Tempe AZ 85287 USA
Detecting out-of-distribution samples for image applications plays an important role in safeguarding the reliability of machine learning model deployment. In this article, we developed a software tool to support our O... 详细信息
来源: 评论
Research on Insider Threat Detection Method Based on variational Autoencoding
收藏 引用
电脑学刊 2021年 第4期32卷 201-210页
作者: Zhenjiang Zhang Lulu Zhao Yang Zhang Hongde Zhou Wei Li
In recent years, internal attacks have posed a serious threat to the security of individuals, companies and even the country. Machine learning is currently a common method of insider threat detection. However, this te... 详细信息
来源: 评论
Automatic Feature Extraction of Channel Gains of Wireless Body Area Network using Convolutional Neural Networks  14
Automatic Feature Extraction of Channel Gains of Wireless Bo...
收藏 引用
14th International Symposium on Medical Information Communication Technology (ISMICT)
作者: Sano, Shintaro Aoyagi, Takahiro Tokyo Inst Technol Sch Engn Tokyo Japan
The channels of wireless body area networks (WBANs) are affected by human motion. Focusing on this characteristic of the WBAN channel, human motion classification and transmission power control have been investigated.... 详细信息
来源: 评论