咨询与建议

限定检索结果

文献类型

  • 904 篇 期刊文献
  • 616 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,532 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,383 篇 工学
    • 942 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 175 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 31 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 23 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 18 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 125 篇 物理学
    • 96 篇 生物学
    • 58 篇 化学
    • 53 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 242 篇 医学
    • 145 篇 临床医学
    • 61 篇 特种医学
    • 55 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 19 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,532 篇 variational auto...
  • 259 篇 deep learning
  • 132 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 47 篇 training
  • 43 篇 unsupervised lea...
  • 42 篇 feature extracti...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 35 篇 generative adver...
  • 35 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,484 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1532 条 记 录,以下是291-300 订阅
排序:
Group Latent Embedding for Vector Quantized variational autoencoder in Non-Parallel Voice Conversion  20
Group Latent Embedding for Vector Quantized Variational Auto...
收藏 引用
Interspeech Conference
作者: Ding, Shaojin Gutierrez-Osuna, Ricardo Texas A&M Univ Dept Comp Sci & Engn College Stn TX 77843 USA
This paper proposes a Group Latent Embedding for Vector Quantized variational autoencoders (VQ-VAE) used in non-parallel Voice Conversion (VC). Previous studies have shown that VQ-VAE can generate high-quality VC synt... 详细信息
来源: 评论
Efficiency of Reinforcement Learning using Polarized Regime by variational autoencoder  61
Efficiency of Reinforcement Learning using Polarized Regime ...
收藏 引用
61st Annual Conference of the Society-of-Instrument-and-Control-Engineers (SICE)
作者: Nakai, Masato Shibuya, Takeshi Univ Tsukuba Doctoral Program Intelligent & Mech Interact Syst Tsukuba Japan Univ Tsukuba Fac Engn Informat & Syst Tsukuba Japan
Reinforcement learning from low-dimensional state expressions extracted as features from images is more efficient than learning directly from high-dimensional images. The autoencoder (AE) is typically used to render a... 详细信息
来源: 评论
Data augmentation using a variational autoencoder for estimating property prices
收藏 引用
PROPERTY MANAGEMENT 2021年 第3期39卷 408-418页
作者: Lee, Changro Kangwon Natl Univ Chunchon South Korea
Purpose Prior studies on the application of deep-learning techniques have focused on enhancing computation algorithms. However, the amount of data is also a key element when attempting to achieve a goal using a quanti... 详细信息
来源: 评论
Time Series Forecasting Based on Structured Decomposition and variational autoencoder
Time Series Forecasting Based on Structured Decomposition an...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Zhang, Zhiyuan Yao, Xuhui Civil Aviat Univ China Coll Comp Sci & Technol Tianjin Peoples R China
Time series forecasting based on decomposition method usually decomposes a complex time series into some simple components, such as long-term and seasonal trends, which are more easy to be predicted. Though long-term ... 详细信息
来源: 评论
Jointly Trained variational autoencoder for Multi-Modal Sensor Fusion  22
Jointly Trained Variational Autoencoder for Multi-Modal Sens...
收藏 引用
22nd International Conference on Information Fusion (FUSION)
作者: Korthals, Timo Hesse, Marc Leitner, Juergen Melnik, Andrew Rueckert, Ulrich Bielefeld Univ Cognitron & Sensor Syst Bielefeld Germany Queensland Univ Technol Australian Ctr Robot Vis Brisbane Qld Australia Bielefeld Univ Neuroinformat Grp Bielefeld Germany
This work presents the novel multi-modal variational autoencoder approach M(2)VAE which is derived from the complete marginal joint log-likelihood. This allows the end-to-end training of Bayesian information fusion on... 详细信息
来源: 评论
Using a variational autoencoder to Learn Valid Search Spaces of Safely Monitored Autonomous Robots for Last-Mile Delivery  23
Using a Variational Autoencoder to Learn Valid Search Spaces...
收藏 引用
Genetic and Evolutionary Computation Conference (GECCO)
作者: Bentley, Peter J. Lim, Soo Ling Arcaini, Paolo Ishikawa, Fuyuki UCL Dept Comp Sci Autodesk Res London England UCL London Dept Comp Sci London England Natl Inst Informat Tokyo Japan
The use of autonomous robots for delivery of goods to customers is an exciting new way to provide a reliable and sustainable service. However, in the real world, autonomous robots still require human supervision for s... 详细信息
来源: 评论
Learning Community Structure with variational autoencoder  18
Learning Community Structure with Variational Autoencoder
收藏 引用
18th IEEE International Conference on Data Mining Workshops (ICDMW)
作者: Choong, Jun Jin Liu, Xin Murata, Tsuyoshi Tokyo Inst Technol Dept Comp Sci Tokyo Japan Natl Inst Adv Ind Sci & Technol Tokyo Japan
Discovering community structure in networks remains a fundamentally challenging task. From scientific domains such as biology, chemistry and physics to social networks the challenge of identifying community structures... 详细信息
来源: 评论
Device Image-IV Mapping using variational autoencoder for Inverse Design and Forward Prediction
Device Image-IV Mapping using Variational Autoencoder for In...
收藏 引用
International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)
作者: Lu, Thomas Lu, Albert Wong, Hiu Yung San Jose State Univ M PAC Lab San Jose CA 95192 USA
This paper demonstrates the learning of the underlying device physics by mapping device structure images to their corresponding Current-Voltage (IV) characteristics using a novel framework based on variational autoenc... 详细信息
来源: 评论
CONTINUAL LEARNING FOR ANOMALY DETECTION WITH variational autoencoder  44
CONTINUAL LEARNING FOR ANOMALY DETECTION WITH VARIATIONAL AU...
收藏 引用
44th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Wiewel, Felix Yang, Bin Univ Stuttgart Inst Signal Proc & Syst Theory Stuttgart Germany
Detecting anomalies using a variational autoencoder (VAE) suffers from catastrophic forgetting when trained on a continually growing set of normal data where only the most recently added data is available. Solving thi... 详细信息
来源: 评论
Improved variational autoencoder Anomaly Detection in Time Series Data
Improved Variational Autoencoder Anomaly Detection in Time S...
收藏 引用
IEEE International Conference on Systems, Man, and Cybernetics (SMC)
作者: Yokkampon, Umaporn Chumkamon, Sakmongkon Mowshowitz, Abbe Fujisawa, Ryusuke Hayashi, Eiji Kyushu Inst Technol Dept Comp Sci & Syst Engn Fukuoka Japan CUNY City Coll Dept Comp Sci New York NY USA
Uncertainty in observations about the state of affairs is unavoidable, and generally undesirable, so we are motivated to try to minimize its effect on data analysis. Detection of anomalies in data has become an import... 详细信息
来源: 评论