咨询与建议

限定检索结果

文献类型

  • 904 篇 期刊文献
  • 616 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,532 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,383 篇 工学
    • 942 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 175 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 31 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 23 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 18 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 125 篇 物理学
    • 96 篇 生物学
    • 58 篇 化学
    • 53 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 242 篇 医学
    • 145 篇 临床医学
    • 61 篇 特种医学
    • 55 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 19 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,532 篇 variational auto...
  • 259 篇 deep learning
  • 132 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 47 篇 training
  • 43 篇 unsupervised lea...
  • 42 篇 feature extracti...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 35 篇 generative adver...
  • 35 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,484 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1532 条 记 录,以下是581-590 订阅
排序:
Achieving deep clustering through the use of variational autoencoders and similarity-based loss
收藏 引用
MATHEMATICAL BIOSCIENCES AND ENGINEERING 2022年 第10期19卷 10344-10360页
作者: Ma, He Harbin Engn Univ Coll Intelligent Syst Sci & Engn Harbin 150000 Peoples R China
Clustering is an important and challenging research topic in many fields. Although various clustering algorithms have been developed in the past, traditional shallow clustering algorithms cannot mine the underlying st... 详细信息
来源: 评论
Semi-supervised soft sensor method for fermentation processes based on physical monotonicity and variational autoencoders
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 第PartA期137卷
作者: Cheng, Xinyue Yu, Zhenhua Wang, Guan Jiang, Qingchao Cao, Zhixing East China Univ Sci & Technol Key Lab Smart Mfg Energy Chem Proc Minist Educ Shanghai 200237 Peoples R China East China Univ Sci & Technol State Key Lab Bioreactor Engn Shanghai 200237 Peoples R China
Data-driven models have shown broad application prospects in soft sensor modeling. However, numerous challenges persist. On the one hand, data-driven soft sensor methods have high requirements on data quality. On the ... 详细信息
来源: 评论
Toward a better monitoring statistic for profile monitoring via variational autoencoders
收藏 引用
JOURNAL OF QUALITY TECHNOLOGY 2021年 第5期53卷 454-473页
作者: Sergin, Nurettin Dorukhan Yan, Hao Arizona State Univ Ind Engineer Program Tempe AZ USA Arizona State Univ Tempe AZ 85287 USA
variational autoencoders have been recently proposed for the problem of process monitoring. While these works show impressive results over classical methods, the proposed monitoring statistics often ignore the inconsi... 详细信息
来源: 评论
Multilevel Anomaly Detection Through variational autoencoders and Bayesian Models for Self-Aware Embodied Agents
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 1399-1414页
作者: Slavic, Giulia Baydoun, Mohamad Campo, Damian Marcenaro, Lucio Regazzoni, Carlo Univ Genoa DITEN Fac Engn I-16145 Genoa Italy Univ Genoa DITEN I-16145 Genoa Italy
Anomaly detection constitutes a fundamental step in developing self-aware autonomous agents capable of continuously learning from new situations, as it enables to distinguish novel experiences from already encountered... 详细信息
来源: 评论
Conservative Policy Construction Using variational autoencoders for Logged Data With Missing Values
收藏 引用
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2023年 第9期34卷 6368-6378页
作者: Abroshan, Mahed Yip, Kai Hou Tekin, Cem van der Schaar, Mihaela Alan Turing Inst London NW1 2DB England UCL London WC1E 6BT England Bilkent Univ Dept Elect & Elect Engn TR-06800 Ankara Turkey Univ Cambridge Dept Appl Math & Theoret Phys Cambridge CB2 1TN England Univ Calif Los Angeles Los Angeles CA 90095 USA
In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncer... 详细信息
来源: 评论
Mitigating the Impact of Temperature Variations on Ultrasonic Guided Wave-Based Structural Health Monitoring through variational autoencoders
收藏 引用
SENSORS 2024年 第5期24卷 1494页
作者: Junges, Rafael Lomazzi, Luca Miele, Lorenzo Giglio, Marco Cadini, Francesco Politecn Milan Dept Mech Engn Via Masa n1 I-20156 Milan Italy
Structural health monitoring (SHM) has become paramount for developing cheaper and more reliable maintenance policies. The advantages coming from adopting such process have turned out to be particularly evident when d... 详细信息
来源: 评论
Using Shapley Values and variational autoencoders to Explain Predictive Models with Dependent Mixed Features
收藏 引用
JOURNAL OF MACHINE LEARNING RESEARCH 2022年 第1期23卷 1-51页
作者: Olsen, Lars Henry Berge Glad, Ingrid Kristine Jullum, Martin Aas, Kjersti Univ Oslo Dept Math Moltke Moes vei 35Niels Henrik Abels hus N-0851 Oslo Norway Norwegian Comp Ctr Gaustadalleen 23aKristen Nygaards hus N-0373 Oslo Norway
Shapley values are today extensively used as a model-agnostic explanation framework to explain complex predictive machine learning models. Shapley values have desirable theoret-ical properties and a sound mathematical... 详细信息
来源: 评论
Recurrent variational autoencoders for Learning Nonlinear Generative Models in the Presence of Outliers
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2018年 第6期12卷 1615-1627页
作者: Wang, Yu Dai, Bin Hua, Gang Aston, John Wipf, David Univ Cambridge Dept Pure Math & Stat Cambridge CB2 1TN England Tsinghua Univ Beijing 100084 Peoples R China Microsoft Res Redmond WA 98052 USA
This paper explores two useful modifications of the recent variational autoencoder (VAE), a popular deep generative modeling framework that dresses traditional autoencoders with probabilistic attire. The first involve... 详细信息
来源: 评论
A process monitoring and fault isolation framework based on variational autoencoders and branch and bound method
收藏 引用
JOURNAL OF THE FRANKLIN INSTITUTE 2022年 第2期359卷 1667-1691页
作者: Tang, Peng Peng, Kaixiang Jiao, Ruihua Univ Sci & Technol Beijing Sch Automat & Elect Engn Key Lab Knowledge Automat Ind Proc Minist Educ Beijing 100083 Peoples R China Peng Cheng Lab Dept Math & Theories 2 Xingke 1st St Nanshan Shenzhen Peoples R China AVIC Xian Aviat Brake Technol Co Ltd Xian 710065 Peoples R China
Nonlinear characteristic widely exists in industrial processes. Many approaches based on kernel methods and machine learning have been developed for nonlinear process monitoring. However, the fault isolation for nonli... 详细信息
来源: 评论
Leveraging variational autoencoders for Parameterized MMSE Estimation
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2024年 72卷 3731-3744页
作者: Baur, Michael Fesl, Benedikt Utschick, Wolfgang Tech Univ Munich TUM Sch Computat Informat & Technol D-80333 Munich Germany
In this manuscript, we propose to use a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator. The variational autoencoder models the underlying unknown d... 详细信息
来源: 评论