咨询与建议

限定检索结果

文献类型

  • 907 篇 期刊文献
  • 618 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,537 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,386 篇 工学
    • 946 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 177 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 59 篇 机械工程
    • 48 篇 材料科学与工程(可...
    • 36 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 24 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 327 篇 理学
    • 124 篇 物理学
    • 95 篇 生物学
    • 59 篇 化学
    • 54 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 243 篇 医学
    • 146 篇 临床医学
    • 61 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,537 篇 variational auto...
  • 260 篇 deep learning
  • 131 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,489 篇 英文
  • 38 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1537 条 记 录,以下是641-650 订阅
排序:
Modality Completion via Gaussian Process Prior variational autoencoders for Multi-modal Glioma Segmentation  24th
Modality Completion via Gaussian Process Prior Variational A...
收藏 引用
International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Hamghalam, Mohammad Frangi, Alejandro F. Lei, Baiying Simpson, Amber L. Queens Univ Sch Comp Kingston ON Canada Islamic Azad Univ Fac Elect Qazvin Branch Qazvin Iran Queens Univ Dept Biomed & Mol Sci Kingston ON Canada Univ Leeds CISTIB Ctr Computat Imaging & Simulat Technol Bio Sch Comp Leeds LS2 9LU W Yorkshire England LICAMM Leeds Inst Cardiovasc & Metab Med Sch Med Leeds LS2 9LU W Yorkshire England Katholieke Univ Leuven Med Imaging Res Ctr MIRC Univ Hosp Gasthuisberg Herestr 49 B-3000 Leuven Belgium Shenzhen Univ Hlth Sci Ctr Sch Biomed EngnGuangdong Key Lab Biomed Measurem Natl Reg Key Technol Engn Lab Med Ultrasound Shenzhen Peoples R China
In large studies involving multi protocol Magnetic Resonance Imaging (MRI), it can occur to miss one or more sub-modalities for a given patient owing to poor quality (e.g. imaging artifacts), failed acquisitions, or h... 详细信息
来源: 评论
Mixtures of variational autoencoders  10
Mixtures of Variational Autoencoders
收藏 引用
10th International Conference on Image Processing Theory, Tools and Applications (IPTA)
作者: Ye, Fei Bors, Adrian G. Univ York Dept Comp Sci York YO10 5GH N Yorkshire England
In this paper, we develop a new deep mixture learning framework, aiming to learn underlying complex data structures. Each component in the mixture model is implemented using a variational autoencoder (VAE). VAE is a w... 详细信息
来源: 评论
Generating Synthetic Flight Tracks for Collision Risk Safety Analysis: variational autoencoders with a Single Seed Track  24
Generating Synthetic Flight Tracks for Collision Risk Safety...
收藏 引用
Integrated Communications, Navigation and Surveillance Conference (ICNS)
作者: Aref, Shahab Shortle, John Sherry, Lance George Mason Univ Ctr Air Transportat Syst Res Syst Engn & Operat Res Fairfax VA 22030 USA
Collision Risk Models (CRM), used by regulatory authorities to approve new procedures and/or technology, assess the probability of air-to-air collisions against a Target Level of Safety (e.g. 10E-9). A key component o... 详细信息
来源: 评论
SELF-ORGANIZED variational autoencoderS (SELF-VAE) FOR LEARNED IMAGE COMPRESSION
SELF-ORGANIZED VARIATIONAL AUTOENCODERS (SELF-VAE) FOR LEARN...
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Yilmaz, M. Akin Keles, Onur Guven, Hilal Tekalp, A. Murat Malik, Junaid Kiranyaz, Serkan Koc Univ Dept Elect & Elect Engn TR-34450 Istanbul Turkey Tampere Univ Tampere Finland Qatar Univ Doha Qatar
In end-to-end optimized learned image compression, it is standard practice to use a convolutional variational autoencoder with generalized divisive normalization (GDN) to transform images into a latent space. Recently... 详细信息
来源: 评论
ViVA: Semi-supervised Visualization via variational autoencoders  20
ViVA: Semi-supervised Visualization via Variational Autoenco...
收藏 引用
20th IEEE International Conference on Data Mining (ICDM)
作者: An, Sungtae Hong, Shenda Sun, Jimeng Georgia Inst Technol Coll Comp Atlanta GA 30332 USA Univ Illinois Dept Comp Sci Urbana IL USA
Visualizing latent embeddings is a popular approach to explain classification models, including deep neural networks. However, existing visualization methods such as t-distributed Stochastic Neighbor Embedding (t-SNE)... 详细信息
来源: 评论
An efficient stock market prediction model using hybrid feature reduction method based on variational autoencoders and recursive feature elimination
收藏 引用
Financial Innovation 2021年 第1期7卷 585-608页
作者: Hakan Gunduz Software Engineering Department Bandirma Onyedi Eylul University10200 BalikesirTurkey
In this study,the hourly directions of eight banking stocks in Borsa Istanbul were predicted using linear-based,deep-learning(LSTM)and ensemble learning(Light-GBM)*** models were trained with four different feature se... 详细信息
来源: 评论
Pair-variational autoencoders for Linking and Cross-Reconstruction of Characterization Data from Complementary Structural Characterization Techniques
收藏 引用
JACS AU 2023年 第9期3卷 2510-2521页
作者: Lu, Shizhao Jayaraman, Arthi Univ Delaware Dept Chem & Biomol Engn Newark DE 19716 USA Univ Delaware Dept Mat Sci & Engn Newark DE 19716 USA
In materials research, structural characterization often requires multiple complementary techniques to obtain a holistic morphological view of a synthesized material. Depending on the availability and accessibility of... 详细信息
来源: 评论
Training variational autoencoders with Discrete Latent Variables Using Importance Sampling  27
Training Variational Autoencoders with Discrete Latent Varia...
收藏 引用
27th European Signal Processing Conference (EUSIPCO)
作者: Bartler, Alexander Wiewel, Felix Mauch, Lukas Yang, Bin Univ Stuttgart Inst Signal Proc & Syst Theory Stuttgart Germany
The variational autoencoder (VAE) is a popular generative latent variable model that is often used for representation learning. Standard VAEs assume continuous-valued latent variables and are trained by maximization o... 详细信息
来源: 评论
Dual Sequential variational autoencoders for Fraud Detection  1
收藏 引用
18th International Symposium on Intelligent Data Analysis (IDA)
作者: Alazizi, Ayman Habrard, Amaury Jacquenet, Francois He-Guelton, Liyun Oble, Frederic Univ Lyon Lab Hubert Curien Univ St Etienne UMR CNRS 5516 F-42000 St Etienne France Worldline F-95870 Bezons France
Fraud detection is an important research area where machine learning has a significant role to play. An important task in that context, on which the quality of the results obtained depends, is feature engineering. Unf... 详细信息
来源: 评论
Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI  7
Deep variational autoencoders for breast cancer tissue model...
收藏 引用
Conference on Diffuse Optical Spectroscopy and Imaging VII held at European Conferences on Biomedical Optics
作者: Pardo, Arturo Lopez-Higuera, Jose M. Pogue, Brian W. Conde, Olga M. Univ Cantabria Photon Engn Grp GIF TEISA Dept Edificio IDi TelecomuniacAvda Castros S-N E-39005 Santander Cantabria Spain Inst Invest Sanitaria Valdecilla IDIVAL Santander 39011 Cantabria Spain Biomed Res Networking Ctr Bioengn Nanomat & Nanos Ave Monforte de Lemos3-5 Pabellon 11Planta 0 Madrid 28029 Spain Dartmouth Coll Thayer Sch Engn Hanover NH 03755 USA
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasa... 详细信息
来源: 评论