咨询与建议

限定检索结果

文献类型

  • 923 篇 期刊文献
  • 619 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,554 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,400 篇 工学
    • 949 篇 计算机科学与技术...
    • 492 篇 电气工程
    • 179 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 129 篇 软件工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 27 篇 化学工程与技术
    • 26 篇 测绘科学与技术
    • 22 篇 动力工程及工程热...
    • 22 篇 土木工程
    • 22 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 14 篇 生物工程
  • 334 篇 理学
    • 126 篇 物理学
    • 95 篇 生物学
    • 62 篇 化学
    • 53 篇 数学
    • 37 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 246 篇 医学
    • 148 篇 临床医学
    • 62 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 110 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,554 篇 variational auto...
  • 262 篇 deep learning
  • 133 篇 anomaly detectio...
  • 93 篇 machine learning
  • 61 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis
  • 26 篇 deep generative ...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 9 篇 tahan antoine
  • 9 篇 zemouri ryad
  • 8 篇 chen junghui
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,498 篇 英文
  • 42 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=variational autoencoder"
1554 条 记 录,以下是911-920 订阅
排序:
Unsupervised Quality Assurance for Brain MR Image Rigid Registration using Latent Shape Representation
Unsupervised Quality Assurance for Brain MR Image Rigid Regi...
收藏 引用
Conference on Medical Imaging - Image Processing
作者: Xue, Yuan Zuo, Lianrui Remedios, Samuel W. Dewey, Blake E. Duan, Peiyu Liu, Yihao Zhang, Rendong Newsome, Scott D. Mowry, Ellen M. Carass, Aaron Prince, Jerry L. Johns Hopkins Univ Dept Elect & Comp Engn Baltimore MD 21218 USA Johns Hopkins Univ Dept Comp Sci Baltimore MD 21218 USA NIA Labo Behav Neurosci NIH Bethesda MD 20892 USA Johns Hopkins Sch Med Dept Neurol Baltimore MD 21287 USA Johns Hopkins Sch Med Dept Biomed Engn Baltimore MD 21287 USA
Linear registration to a standard space is a crucial early step in the processing of magnetic resonance images (MRIs) of the human brain. Thus an accurate registration is essential for subsequent image processing step... 详细信息
来源: 评论
Adversarial Anomaly Detection using Gaussian Priors and Nonlinear Anomaly Scores  23
Adversarial Anomaly Detection using Gaussian Priors and Nonl...
收藏 引用
23rd IEEE International Conference on Data Mining (IEEE ICDM)
作者: Lueer, Fiete Weber, Tobias Dolgich, Maxim Boehm, Christian eMundo Gmbh Gofore Oyj Munich Germany Ludwig Maximilians Univ Munchen Dept Stat Munich Germany Univ Vienna Fac Comp Sci Vienna Austria
Anomaly detection in imbalanced datasets is a frequent and crucial problem, especially in the medical domain where retrieving and labeling irregularities is often expensive. By combining the generative stability of a ... 详细信息
来源: 评论
Frame-Level Event Representation Learning for Semantic-Level Generation and Editing of Avatar Motion  23
Frame-Level Event Representation Learning for Semantic-Level...
收藏 引用
25th International Conference on Multimodal Interaction (ICMI)
作者: Ideno, Ayaka Kaneko, Takuhiro Harada, Tatsuya Univ Tokyo Tokyo Japan NTT Corp Yokosuka Kanagawa Japan Univ Tokyo RIKEN Tokyo Japan
Understanding an avatar's motion and controlling its content is important for content creation and has been actively studied in computer vision and graphics. An avatar's motion consists of frames representing ... 详细信息
来源: 评论
A Continuous Representation Of Switching Linear Dynamic Systems For Accurate Tracking  22
A Continuous Representation Of Switching Linear Dynamic Syst...
收藏 引用
22nd IEEE Statistical Signal Processing Workshop (SSP)
作者: Karimi, Parisa Naumer, Helmuth Kamalabadi, Farzad Univ Illinois Dept Elect & Comp Engn Urbana IL 61801 USA
We propose a method for tracking linear representations of a nonlinear dynamic system with time-varying parameters based on a continuous representation of its switching linear dynamic system (SLDS) model. Given approx... 详细信息
来源: 评论
Deep Generative Imputation Model for Missing Not At Random Data  23
Deep Generative Imputation Model for Missing Not At Random D...
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Chen, Jialei Xu, Yuanbo Wang, Pengyang Yang, Yongjian Jilin Univ Dept Comp Sci & Technol MIC Lab Changchun Peoples R China Univ Macau Dept Comp & Informat Sci SKL IOTSC Macau Peoples R China
Data analysis usually suffers from the Missing Not At Random (MNAR) problem, where the cause of the value missing is not fully observed. Compared to the naive Missing Completely At Random (MCAR) problem, it is more in... 详细信息
来源: 评论
A UAV Indoor Obstacle Avoidance System Based on Deep Reinforcement Learning
A UAV Indoor Obstacle Avoidance System Based on Deep Reinfor...
收藏 引用
Asia-Pacific-Signal-and-Information-Processing-Association Annual Summit and Conference (APSIPA ASC)
作者: Lo, Chun-Huang Lee, Chung-Nan Natl Sun Yat Sen Univ Dept Comp Sci & Engn Kaohsiung Taiwan
This paper presents a vision-based unmanned aerial vehicle (UAV) indoor obstacle avoidance using a deep reinforcement learning (DRL). The system consists of two parts a depth map compression and a UAV control. For the... 详细信息
来源: 评论
Multivariate air quality time series analysis via a recurrent variational deep learning model  13
Multivariate air quality time series analysis via a recurren...
收藏 引用
Conference on Geospatial Informatics XIII
作者: Loughlin, Cooper Manolakis, Dimitris Ingle, Vinay Northeastern Univ 360 Huntington Ave Boston MA 02115 USA MIT Lincoln Lab 244 Wood St Lexington MA 02421 USA
Monitoring of air pollutants across space and time is critical in understanding pollution trends and reporting air quality. The Air Quality Index (AQI) is a tool used to communicate air quality that incorporates atmos... 详细信息
来源: 评论
Generative Slate Recommendation with Reinforcement Learning  23
Generative Slate Recommendation with Reinforcement Learning
收藏 引用
16th International Conference on Web Search and Data Mining
作者: Deffayet, Romain Thonet, Thibaut Renders, Jean-Michel de Rijke, Maarten Naver Labs Europe Meylan France Univ Amsterdam Amsterdam Netherlands
Recent research has employed reinforcement learning (RL) algorithms to optimize long-term user engagement in recommender systems, thereby avoiding common pitfalls such as user boredom and filter bubbles. They capture ... 详细信息
来源: 评论
Towards Multi-User Activity Recognition through Facilitated Training Data and Deep Learning for Human-Robot Collaboration Applications
Towards Multi-User Activity Recognition through Facilitated ...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Semeraro, Francesco Carberry, Jon Cangelosi, Angelo Univ Manchester Manchester Ctr Robot & Manchester Lancs England BAE Syst Plc BAE Syst Operat Ltd Warton England
Human-robot interaction (HRI) research is progressively addressing multi-party scenarios, where a robot interacts with more than one human user at the same time. Conversely, research is still at an early stage for hum... 详细信息
来源: 评论
Two-stage instrument timbre transfer method using RAVE  26
Two-stage instrument timbre transfer method using RAVE
收藏 引用
26th International Symposium on Multimedia, ISM 2024
作者: Hu, Di Ito, Katunobu Hosei University Graduate School of Computer and Information Sciences Tokyo Japan Hosei University Faculty of Computer and Information Sciences Tokyo Japan
Recently, the real-time audio variational autoencoder (RAVE) method was developed for high-quality audio waveform synthesis. The RAVE method is based on a variational autoencoder and employs a two-stage training strat... 详细信息
来源: 评论