咨询与建议

限定检索结果

文献类型

  • 206 篇 期刊文献
  • 134 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 345 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 327 篇 工学
    • 250 篇 计算机科学与技术...
    • 166 篇 电气工程
    • 50 篇 软件工程
    • 33 篇 信息与通信工程
    • 19 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 13 篇 控制科学与工程
    • 8 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 测绘科学与技术
  • 59 篇 医学
    • 56 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 16 篇 理学
    • 11 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 345 篇 video object seg...
  • 39 篇 object segmentat...
  • 27 篇 deep learning
  • 25 篇 task analysis
  • 20 篇 image segmentati...
  • 20 篇 motion segmentat...
  • 18 篇 object tracking
  • 14 篇 training
  • 14 篇 convolutional ne...
  • 13 篇 optical flow
  • 13 篇 feature extracti...
  • 10 篇 annotations
  • 9 篇 self-supervised ...
  • 8 篇 target tracking
  • 8 篇 decoding
  • 8 篇 visualization
  • 8 篇 convolutional ne...
  • 8 篇 video signal pro...
  • 7 篇 transformer
  • 7 篇 markov random fi...

机构

  • 7 篇 beijing jiaotong...
  • 6 篇 shanghai univ sc...
  • 5 篇 guangdong prov k...
  • 5 篇 beijing inst tec...
  • 5 篇 fudan univ acad ...
  • 5 篇 fudan univ sch c...
  • 4 篇 sun yat sen univ...
  • 4 篇 southern univ sc...
  • 4 篇 microsoft res as...
  • 4 篇 beihang univ peo...
  • 4 篇 nanjing univ sci...
  • 4 篇 nanjing univ inf...
  • 3 篇 sun yat sen univ...
  • 3 篇 natl penghu univ...
  • 3 篇 tsinghua univ ts...
  • 3 篇 china univ min &...
  • 3 篇 univ chinese aca...
  • 3 篇 univ chinese aca...
  • 3 篇 univ macau state...
  • 3 篇 korea univ sch e...

作者

  • 6 篇 zhang wenqiang
  • 6 篇 yang zhi-xin
  • 5 篇 zhang yongdong
  • 5 篇 chen yadang
  • 5 篇 yao rui
  • 5 篇 kim chang-su
  • 5 篇 liu zhi
  • 5 篇 wu enhua
  • 5 篇 lu huchuan
  • 5 篇 liu yong
  • 5 篇 zhang wei
  • 4 篇 koh yeong jun
  • 4 篇 hu wu-chih
  • 4 篇 he zifen
  • 4 篇 wang wenguan
  • 4 篇 zhou tianfei
  • 4 篇 li bo
  • 4 篇 guo pinxue
  • 4 篇 zheng nanning
  • 4 篇 dang jisheng

语言

  • 337 篇 英文
  • 6 篇 中文
  • 2 篇 其他
检索条件"主题词=video object segmentation"
345 条 记 录,以下是41-50 订阅
排序:
video object segmentation by Integrating Motion Information and Gradient Compensation without Background Construction
Video Object Segmentation by Integrating Motion Information ...
收藏 引用
9th International Conference on Hybrid Intelligent Systems (HIS 2009)
作者: Hu, Wu-Chih Yang, Ching-Yu Huang, Deng-Yuan Hsu, Jung-Fu Department of Computer Science and Information Engineering National Penghu University Taiwan Department of Electrical Engineering Dayeh University Taiwan
This paper proposes an effective method for video object segmentation without background construction. In the proposed method, the coarse foreground extraction and fine foreground extraction are obtained using the mot... 详细信息
来源: 评论
video object segmentation AGGREGATION
VIDEO OBJECT SEGMENTATION AGGREGATION
收藏 引用
IEEE International Conference on Multimedia & Expo (ICME)
作者: Zhou, Tianfei Lu, Yao Di, Huijun Zhang, Jian Beijing Lab Intelligent Informat Technol Beijing Peoples R China Beijing Inst Technol Sch Comp Sci Beijing Peoples R China Univ Technol Sydney Fac Engn & Informat Technol Sydney NSW 2007 Australia
We present an approach for unsupervised object segmentation in unconstrained videos. Driven by the latest progress in this field, we argue that segmentation performance can be largely improved by aggregating the resul... 详细信息
来源: 评论
video object segmentation by Learning Location-Sensitive Embeddings  15th
Video Object Segmentation by Learning Location-Sensitive Emb...
收藏 引用
15th European Conference on Computer Vision (ECCV)
作者: Ci, Hai Wang, Chunyu Wang, Yizhou Peking Univ EECS Beijing Peoples R China Microsoft Res Asia Beijing Peoples R China Deepwise AI Lab Beijing Peoples R China
We address the problem of video object segmentation which outputs the masks of a target object throughout a video given only a bounding box in the first frame. There are two main challenges to this task. First, the ba... 详细信息
来源: 评论
video object segmentation Based on Guided Feature Transfer Learning  28th
Video Object Segmentation Based on Guided Feature Transfer L...
收藏 引用
28th International Workshop on Frontiers of Computer Vision (IW-FCV)
作者: Fiaz, Mustansar Mahmood, Arif Farooq, Sehar Shahzad Ali, Kamran Shaheryar, Muhammad Jung, Soon Ki Mohamed Bin Zayed Univ Artificial Intelligence Dept Comp Vis Abu Dhabi U Arab Emirates Informat Technol Univ Dept Comp Sci Lahore Pakistan Kyungpook Natl Univ Sch Comp Sci & Engn Daegu South Korea Univ Cent Florida Dept Comp Sci Orland FL USA
video object segmentation (VOS) is a fundamental task with many real-world computer vision applications and challenging due to available distractors and background clutter. Many existing online learning approaches hav... 详细信息
来源: 评论
Fast target-aware learning for few-shot video object segmentation
收藏 引用
Science China(Information Sciences) 2022年 第8期65卷 71-86页
作者: Yadang CHEN Chuanyan HAO Zhi-Xin YANG Enhua WU Engineering Research Center of Digital Forensics Ministry of EducationSchool of Computer and SoftwareNanjing University of Information Science and Technology School of Education Science and Technology Nanjing University of Posts and Telecommunications State Key Laboratory of Internet of Things for Smart City Department of Electromechanical EngineeringUniversity of Macau State Key Laboratory of Computer Science Institute of SoftwareUniversity of Chinese Academy of Sciences Faculty of Science and Technology University of Macau
Few-shot video object segmentation(FSVOS) aims to segment a specific object throughout a video sequence when only the first-frame annotation is given. In this study, we develop a fast target-aware learning approach fo... 详细信息
来源: 评论
ASDeM: Augmenting SAM With Decoupled Memory for video object segmentation
收藏 引用
IEEE ACCESS 2024年 12卷 73218-73227页
作者: Liu, Xiaohu Luo, Yichuang Sun, Wei Shaanxi Univ Technol Trine Engn Inst Hanzhong 723001 Peoples R China Xian Peihua Univ Dept Intelligent Sci & Engn Xian 710125 Peoples R China Shaanxi Univ Technol Sch Mech Engn Hanzhong 723001 Peoples R China
video object segmentation models have gained impressive performance, but present low interactivity with different prompts, such as click, box or text. Some models combined with SAM in a naive manner to enhance this ab... 详细信息
来源: 评论
Adaptive Selection of Reference Frames for video object segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 1057-1071页
作者: Hong, Lingyi Zhang, Wei Chen, Liangyu Zhang, Wenqiang Fan, Jianping Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Lenovo Res AI Lab Beijing 100085 Peoples R China
video object segmentation is a challenging task in computer vision because the appearances of target objects might change drastically along the time in the video. To solve this problem, space-time memory (STM) network... 详细信息
来源: 评论
HFVOS: History-Future Integrated Dynamic Memory for video object segmentation
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2024年 第10期34卷 10208-10222页
作者: Li, Wanyun Fan, Jack Guo, Pinxue Hong, Lingyi Zhang, Wei Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai 200433 Peoples R China Univ North Carolina Chapel Hill Dept Comp Sci Chapel Hill NC 27599 USA Fudan Univ Acad Engn & Technol Shanghai 200433 Peoples R China
Memory-based methods have substantially enhanced the precision of video object segmentation (VOS) by storing features in an expanding memory bank. However, this comes at the cost of increased computational demands and... 详细信息
来源: 评论
Unified Spatio-Temporal Dynamic Routing for Efficient video object segmentation
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第5期25卷 4512-4526页
作者: Dang, Jisheng Zheng, Huicheng Xu, Xiaohao Guo, Yulan Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Univ Michigan Robot Dept Ann Arbor MI 48104 USA Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 518000 Peoples R China Natl Univ Def Technol Coll Elect Sci & Technol Changsha 410073 Peoples R China
Existing methods for video object segmentation (VOS) have achieved significant success by performing semantic guidance, spatial constraint, or temporal consistency. However, VOS still remains highly challenging becaus... 详细信息
来源: 评论
A Bayesian approach to video object segmentation via merging 3-D watershed volumes
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2005年 第1期15卷 175-180页
作者: Tsai, YP Lai, CC Hung, YP Shih, ZC Acad Sinica Inst Informat Sci Taipei 115 Taiwan Natl Chiao Tung Univ Dept Comp & Informat Sci Hsinchu 300 Taiwan Natl Taiwan Univ Dept Comp Sci & Informat Engn Taipei 106 Taiwan Natl Chiao Tung Univ Dept Comp & Informat Sci Hsinchu 30050 Taiwan
In this letter, we propose a Bayesian approach to video object segmentation. Our method consists of two stages. In the first stage, we partition the video data into a set of three-dimensional (3-D) watershed volumes, ... 详细信息
来源: 评论