咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 12 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 4 篇 软件工程
    • 1 篇 电子科学与技术(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 14 篇 visual semantic ...
  • 5 篇 cross-modal retr...
  • 3 篇 image-text match...
  • 3 篇 visualization
  • 3 篇 semantics
  • 3 篇 image-text retri...
  • 2 篇 task analysis
  • 2 篇 computational mo...
  • 2 篇 feature extracti...
  • 2 篇 integrated circu...
  • 2 篇 training
  • 1 篇 video-text retri...
  • 1 篇 multimodal learn...
  • 1 篇 hard negative mi...
  • 1 篇 transformer
  • 1 篇 memory network
  • 1 篇 deep learning
  • 1 篇 imagetext retrie...
  • 1 篇 gradient vanishi...
  • 1 篇 multi-view learn...

机构

  • 2 篇 chongqing univ s...
  • 2 篇 china telecom di...
  • 2 篇 ocean univ china...
  • 2 篇 ocean univ china...
  • 1 篇 chongqing normal...
  • 1 篇 kunming univ sci...
  • 1 篇 state key lab he...
  • 1 篇 qingdao univ tec...
  • 1 篇 ping an life ins...
  • 1 篇 chongqing univ t...
  • 1 篇 sunyat sen univ ...
  • 1 篇 beijing univ pos...
  • 1 篇 cent south univ ...
  • 1 篇 natl taiwan norm...
  • 1 篇 beijing univ pos...
  • 1 篇 cent south univ ...
  • 1 篇 northeastern uni...
  • 1 篇 dongguk univ 30 ...
  • 1 篇 cent south univ ...
  • 1 篇 southwest univ s...

作者

  • 2 篇 li zheng
  • 2 篇 guo caili
  • 2 篇 li yuezun
  • 2 篇 dong junyu
  • 2 篇 ding yunlai
  • 2 篇 wang xin
  • 2 篇 yu jiaao
  • 1 篇 feng zerun
  • 1 篇 wang xingwei
  • 1 篇 mingkang wang
  • 1 篇 zhang yongzhong
  • 1 篇 xie haojie
  • 1 篇 seo sanghyun
  • 1 篇 he jun
  • 1 篇 xie bin
  • 1 篇 jigang liu
  • 1 篇 li li
  • 1 篇 liu yang
  • 1 篇 shi ziyang
  • 1 篇 zhai songlin

语言

  • 14 篇 英文
检索条件"主题词=visual semantic embedding"
14 条 记 录,以下是1-10 订阅
排序:
Multi-view visual semantic embedding for cross-modal image-text retrieval
收藏 引用
PATTERN RECOGNITION 2025年 159卷
作者: Li, Zheng Guo, Caili Wang, Xin Zhang, Hao Hu, Lin Beijing Univ Posts & Telecommun Beijing Key Lab Network Syst Architecture & Conver Beijing Peoples R China Beijing Univ Posts & Telecommun Beijing Lab Adv Informat Networks Beijing Peoples R China China Telecom Digital Intelligence Technol Co Ltd Beijing Peoples R China State Key Lab Heavy duty & Express High power Elec Zhuzhou Peoples R China
visual semantic embedding (VSE) is a dominant method for cross-modal image-text retrieval. The purpose of VSE is to learn an embedding space where images can be embedded close to the corresponding captions. However, t... 详细信息
来源: 评论
VSE-fs: Fast Full-Sample visual semantic embedding
收藏 引用
IEEE INTELLIGENT SYSTEMS 2021年 第4期36卷 3-12页
作者: Zhai, Songlin Guo, Guibing Yuan, Fajie Liu, Yuan Wang, Xingwei Northeastern Univ Shenyang 110819 Peoples R China
The visual semantic embedding (VSE) aims to construct a joint embedding space between visual features and semantic information, whereby classes can be well retrieved for a given image. However, VSE faces the computati... 详细信息
来源: 评论
Hypercube Pooling for visual semantic embedding
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2024年 第12期20卷 1-17页
作者: Wang, Hongbin Tang, Rui Li, Fan Kunming Univ Sci & Technol Fac Informat Engn & Automat Kunming Peoples R China Kunming Univ Sci & Technol Yunnan Prov Key Lab Artificial Intelligence Kunming Peoples R China
visual semantic embedding (VSE) is a primary model for cross-modal retrieval, wherein the global feature aggregator is a crucial component of the VSE model. In recent research, the General Pooling Operator (GPO) aggre... 详细信息
来源: 评论
Regularizing visual semantic embedding With Contrastive Learning for Image-Text Matching
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 1332-1336页
作者: Liu, Yang Liu, Hong Wang, Huaqiu Liu, Mengyuan Chongqing Univ Technol Sch Artificial Intelligence Chongqing 401135 Peoples R China Peking Univ Key Lab Machine Percept Beijing 100871 Peoples R China SunYat Sen Univ Sch Intelligent Syst Engn Guangzhou 510275 Peoples R China
Learning visual semantic embedding for image-text matching has achieved high success by using triplet loss to pull positive image-text pairs which share similar semantic meaning and to push negative image-text pairs w... 详细信息
来源: 评论
Multimodal Learning with Triplet Ranking Loss for visual semantic embedding Learning  12th
Multimodal Learning with Triplet Ranking Loss for Visual Sem...
收藏 引用
12th International Conference on Knowledge Science, Engineering and Management (KSEM)
作者: Yang, Zhanbo Li, Li He, Jun Wei, Zixi Liu, Li Liao, Jun Southwest Univ Sch Comp & Informat Sci Chongqing 400715 Peoples R China Chongqing Univ Sch Big Data & Software Engn Chongqing 400044 Peoples R China
semantic embedding learning for image and text has been well studied in recent years. In this paper, we present a simple while effective dual-encoder (image encoder and text encoder) framework to unify image and text ... 详细信息
来源: 评论
Dynamic Soft Labeling for visual semantic embedding  24
Dynamic Soft Labeling for Visual Semantic Embedding
收藏 引用
4th Annual International Conference on Multimedia Retrieval (ICMR)
作者: Yu, Jiaao Ding, Yunlai Dong, Junyu Li, Yuezun Ocean Univ China Coll Comp Sci & Technol Qingdao Shandong Peoples R China Ocean Univ China Sanya Oceanog Inst Sanya Hainan Peoples R China
visual semantic embedding (VSE) is a prominent approach in image-text retrieval, aiming to learn a deep embedding space that aligns visual data with semantic text labels. However, current VSE methods oversimplify the ... 详细信息
来源: 评论
Multilabel Deep visual-semantic embedding
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2020年 第6期42卷 1530-1536页
作者: Yeh, Mei-Chen Li, Yi-Nan Natl Taiwan Normal Univ Dept Comp Sci & Informat Engn Taipei 106 Taiwan ASUS Corp Taipei 112 Taiwan
Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visual-semantic embedding, we exploit extending these models for multilabel images. We propose a new learning paradigm for ... 详细信息
来源: 评论
Ambiguity-Aware and High-order Relation learning for multi-grained image-text matching
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 316卷
作者: Chen, Junyu Gao, Yihua Ge, Mingyuan Li, Mingyong Chongqing Normal Univ Coll Comp & Informat Sci Chongqing 401331 Peoples R China Chongqing Univ Sch Big Data & Software Engn Chongqing 401331 Peoples R China
Image-text matching is crucial for bridging the semantic gap between computer vision and natural language processing. However, existing methods still face challenges in handling high-order associations and semantic am... 详细信息
来源: 评论
Selectively Hard Negative Mining for Alleviating Gradient Vanishing in Image-Text Matching
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2025年 第2期35卷 1921-1935页
作者: Li, Zheng Guo, Caili Wang, Xin Feng, Zerun Du, Zhongtian Beijing Univ Posts & Telecommun Sch Informat & Commun Engn Beijing 100876 Peoples R China China Telecom Digital Intelligence Technol Co Ltd Beijing 100035 Peoples R China China Telecom Inst Artificial Intelligence TeleAI Beijing 100032 Peoples R China
Most Image-Text Matching (ITM) models adopt Triplet loss with Hard Negative mining (T-HN) as the optimization objective. T-HN mines the hardest negative samples in each batch for training and achieves impressive perfo... 详细信息
来源: 评论
LUNETR: Language-Infused UNETR for precise pancreatic tumor segmentation in 3D medical image
收藏 引用
NEURAL NETWORKS 2025年 187卷 107414页
作者: Shi, Ziyang Zhang, Ruopeng Wei, Xiajun Yu, Cheng Xie, Haojie Hu, Zhen Chen, Xili Zhang, Yongzhong Xie, Bin Luo, Zhengmao Peng, Wanxiang Xie, Xiaochun Li, Fang Long, Xiaoli Li, Lin Hu, Linan Cent South Univ Forestry & Technol Sch Elect Informat & Phys Changsha 410004 Peoples R China Cent South Univ Xiangya Sch Med Dept Radiol Zhuzhou Hosp Zhuzhou 412002 Peoples R China Cent South Univ Xiangya Hosp 2 Dept Radiol Changsha 410011 Peoples R China
The identification of early micro-lesions and adjacent blood vessels in CT scans plays a pivotal role in the clinical diagnosis of pancreatic cancer, considering its aggressive nature and high fatality rate. Despite t... 详细信息
来源: 评论