Physical layer impairment aware routingalgorithms have been proposed for optical transparent networks in order to calculate the feasibility of dynamically establishing an optical path when no regeneration is used. Th...
详细信息
Physical layer impairment aware routingalgorithms have been proposed for optical transparent networks in order to calculate the feasibility of dynamically establishing an optical path when no regeneration is used. The benefit of node clustering in optical networks, regarding routing with physical layer impairment awareness, is investigated under the CANON network architecture where regenerators are conveniently placed and routing is confined among a small subset of nodes. The CANON architecture exhibits enhanced blocking performance, high resource utilisation and adequate physical performance;hence, it can serve Quality of Service.
This paper considers the problem of wavelength conversion in optical networks using wavelength division multiplexing technique. In the previous literature, two main wavelengthrouting and assignment strategies have be...
详细信息
This paper considers the problem of wavelength conversion in optical networks using wavelength division multiplexing technique. In the previous literature, two main wavelengthrouting and assignment strategies have been introduced: wavelength path (WP) and virtual wavelength path (VWP), depending on whether the signal stays on the same wavelength or is converted to another during its travel throughout the network. While the former method does not require any wavelength conversion, the latter needs wavelength conversion in each optical node and, in particular, a wavelength converter per each signal handled by the node itself. From the previous literature emerged that the VWP leads to optical cross-connect (OXC) with lower dimensions compared to the ones required by the WP scheme, and that the difference between the WP and VWP schemes increases as the number of wavelengths carried by each fiber increases. In this paper a new strategy is introduced, named partial virtual wavelength path (PVWP), with the related wavelengthrouting and assignment algorithm, which makes limited use of wavelength conversion compared to the VWP scheme, and allows the same advantages of VWP to be attained with lower OXC dimensions. The paper reports a comparative analysis among the different strategies, considering both the cases of a network without failures and a network with the possibility of failure restoration. The main result is that the proposed PVWP strategy allows the same advantages of the VWP scheme with a strongly reduced number of wavelength converters (around 5% of the number required by VWP scheme). This figure does not vary appreciably if failure restoration is considered. The new strategy can be adopted by using an opportune OXC architecture, as illustrated in the paper, which allow a limited number of converters to be shared among all the channels as a common pool.
暂无评论