咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 14 篇 会议

馆藏范围

  • 43 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 43 篇 工学
    • 34 篇 计算机科学与技术...
    • 24 篇 电气工程
    • 6 篇 信息与通信工程
    • 6 篇 软件工程
    • 4 篇 测绘科学与技术
    • 2 篇 仪器科学与技术
    • 2 篇 环境科学与工程(可...
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
  • 11 篇 医学
    • 8 篇 临床医学
    • 3 篇 特种医学
  • 5 篇 理学
    • 2 篇 地球物理学
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 化学
    • 1 篇 地理学
  • 1 篇 农学
    • 1 篇 农业资源与环境

主题

  • 43 篇 weakly supervise...
  • 7 篇 object detection
  • 4 篇 proposals
  • 4 篇 semantics
  • 4 篇 multiple instanc...
  • 3 篇 deep learning
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 multi-view learn...
  • 2 篇 context informat...
  • 2 篇 knowledge distil...
  • 2 篇 remote sensing i...
  • 2 篇 and deep learnin...
  • 2 篇 discriminative f...
  • 2 篇 complementary le...
  • 2 篇 convolutional ne...
  • 1 篇 graph neural net...
  • 1 篇 selfattention
  • 1 篇 progressive lear...
  • 1 篇 contextual infor...

机构

  • 2 篇 univ chinese aca...
  • 2 篇 nanjing univ sta...
  • 2 篇 shenzhen key lab...
  • 2 篇 univ elect sci &...
  • 2 篇 univ chinese aca...
  • 2 篇 harbin inst tech...
  • 2 篇 pengcheng lab pe...
  • 2 篇 sungkyunkwan uni...
  • 2 篇 univ elect sci &...
  • 1 篇 beihang univ han...
  • 1 篇 zhongguancun lab...
  • 1 篇 beijing normal u...
  • 1 篇 beijing normal u...
  • 1 篇 harbin inst tech...
  • 1 篇 beihang univ sch...
  • 1 篇 xidian univ key ...
  • 1 篇 northwestern pol...
  • 1 篇 shenzhen inst ar...
  • 1 篇 wuhan univ sch r...
  • 1 篇 univ sci & techn...

作者

  • 4 篇 zeng bing
  • 4 篇 zhang ming
  • 3 篇 xu yong
  • 3 篇 wu zhihao
  • 3 篇 yang jian
  • 2 篇 awan mehwish
  • 2 篇 wen jie
  • 2 篇 li xuelong
  • 2 篇 shin jitae
  • 2 篇 wu jianxin
  • 2 篇 wan fang
  • 2 篇 han zhenjun
  • 2 篇 ye qixiang
  • 1 篇 ye binfeng
  • 1 篇 qiu shaohua
  • 1 篇 tang xu
  • 1 篇 wang guanchun
  • 1 篇 ding mingli
  • 1 篇 cao chuanshuo
  • 1 篇 liu jingjing

语言

  • 40 篇 英文
  • 2 篇 其他
检索条件"主题词=weakly supervised object detection"
43 条 记 录,以下是1-10 订阅
排序:
weakly supervised object detection from remote sensing images via self-attention distillation and instance-aware mining
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第13期83卷 39073页
作者: Yang, Peng Zhou, Shi Wang, Linlin Yang, Guowei Nanjing Audit Univ Sch Comp Sci Nanjing 211815 Peoples R China Wuhan Univ Sch Remote Sensing & Informat Engn Wuhan 430079 Peoples R China
weakly supervised object detection (WSOD) is an effective method to train object detectors using only image-level category labels, and has been concerned in the field of remote sensing image processing due to its inex... 详细信息
来源: 评论
weakly supervised object detection With Class Prototypical Network
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2023年 25卷 1868-1878页
作者: Li, Huifang Li, Yidong Cao, Yuanzhouhan Han, Yushan Jin, Yi Wei, Yunchao Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China
In this paper, we aim to devise a new framework to compel the network to be equipped with the capability of detecting objects using image-level class labels as supervision. The challenge of such a weakly supervised se... 详细信息
来源: 评论
weakly supervised object detection Using Proposal- and Semantic-Level Relationships
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022年 第6期44卷 3349-3363页
作者: Zhang, Dingwen Zeng, Wenyuan Yao, Jieru Han, Junwei Northwestern Polytech Univ Sch Automat Brain & Artificial Intelligence Lab Xian 710072 Peoples R China
In recent years, weakly supervised object detection has attracted great attention in the computer vision community. Although numerous deep learning-based approaches have been proposed in the past few years, such an il... 详细信息
来源: 评论
Multi-instance mining with dynamic localization for weakly supervised object detection in remote-sensing images
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2025年 第9期46卷 3487-3512页
作者: Guo, Chen Ma, Zhenyu Zhao, Yangyang Cao, Chuanshuo Jiang, Zhiguo Zhang, Haopeng Xian Modern Control Technol Res Inst Xian Peoples R China Beihang Univ Tianmushan Lab Hangzhou Peoples R China Beihang Univ Sch Astronaut Dept Aerosp Intelligent Sci & Technol 9 Nansan StShahe Univ Pk Beijing 102206 Peoples R China
weakly supervised remote-sensing image object detection is crucial in the interpretation of remote-sensing images. Current mainstream approaches often focus on selecting the highest-scoring instances for training the ... 详细信息
来源: 评论
Low-Shot weakly supervised object detection for Remote Sensing Images via Part Domination-Based Active Learning and Enhanced Fine-Tuning
收藏 引用
REMOTE SENSING 2025年 第7期17卷 1155-1155页
作者: Liu, Peng Huang, Boxue Jin, Tingting Long, Hui Chinese Acad Sci Aerosp Informat Res Inst Beijing 100094 Peoples R China Chinese Acad Sci Key Lab Technol Geospatial Informat Proc & Applica Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Target Cognit & Applicat Technol TCAT Beijing 100190 Peoples R China Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China
In low-shot weakly supervised object detection (LS-WSOD), a small number of strong (instance-level) labels are introduced to a weakly (image-level) annotated dataset, thus balancing annotation costs and model performa... 详细信息
来源: 评论
Towards Precise weakly supervised object detection via Interactive Contrastive Learning of Context Information
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2025年 第2期9卷 1795-1804页
作者: Lai, Qi Vong, Chi-Man Shi, Sai-Qi Chen, C. L. Philip Chinese Acad Sci Shenzhen Inst Adv Technol Shenzhen 518055 Peoples R China Univ Macau Dept Comp & Informat Sci Macau 999078 Peoples R China Univ Macau Dept Elect & Comp Engn Macau 999078 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China
weakly supervised object detection (WSOD) aims at learning precise object detectors with only image-level tags. In spite of intensive research on deep learning (DL) approaches over the past few years, there is still a... 详细信息
来源: 评论
Pseudo-label enhancement for weakly supervised object detection using self-supervised vision transformer
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 311卷
作者: Yang, Kequan Wu, Yuanchen Li, Jide Yin, Chao Li, Xiaoqiang Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China
weakly supervised object detection (WSOD) using image-level labels has gained attention in the computer vision community. Most advanced WSOD approaches generate instance-level labels based on class activation maps (CA... 详细信息
来源: 评论
Multi-view contextual adaptation network for weakly supervised object detection in remote sensing images
收藏 引用
INTERNATIONAL JOURNAL OF REMOTE SENSING 2024年 第13期45卷 4344-4366页
作者: Ye, Binfeng Zhang, Junjie Rao, Yutao Gao, Rui Zeng, Dan Shanghai Univ Shanghai Inst Adv Commun & Data Sci Key Lab Specialty Fiber Opt & Opt Access Networks Shanghai Peoples R China
weakly supervised learning plays a pivotal role in the field of object detection, i.e. weakly supervised object detection (WSOD), significantly reducing annotation costs relying on image-level labels. However, WSOD ex... 详细信息
来源: 评论
Misclassification in weakly supervised object detection
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 3413-3427页
作者: Wu, Zhihao Xu, Yong Yang, Jian Li, Xuelong Harbin Inst Technol Shenzhen Sch Comp Sci & Technol Shenzhen 518055 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Nanjing Univ Sci & Technol Dept Comp Sci & Engn Nanjing 210094 Peoples R China Northwestern Polytech Univ Sch Artificial Intelligence OPt & Elect iOPEN Xian 710072 Shaanxi Peoples R China
weakly supervised object detection (WSOD) aims to train detectors using only image-category labels. Current methods typically first generate dense class-agnostic proposals and then select objects based on the classifi... 详细信息
来源: 评论
weakly supervised object detection with Position Information of Convolution Neural Network  10
Weakly Supervised Object Detection with Position Information...
收藏 引用
IEEE 10th International Conference on Information, Communication and Networks (ICICN)
作者: Sun, Bo Yan, Huanqing He, Jun Yu, Lejun Zhang, Yinghui Beijing Normal Univ Sch Artif Intelligence Coll Educ Future Beijing Zhuhai Peoples R China Beijing Normal Univ Sch Artif Intelligence Beijing Peoples R China Beijing Normal Univ Coll Educ Future Zhuhai Peoples R China
weakly supervised object detection (WSOD) is a task that training object detector with only image-level label which typically means the category label. In this task, it is difficult to train a separate position regres... 详细信息
来源: 评论