咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 65 篇 计算机科学与技术...
    • 43 篇 电气工程
    • 16 篇 软件工程
    • 12 篇 测绘科学与技术
    • 9 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 29 篇 医学
    • 23 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 16 篇 理学
    • 11 篇 地球物理学
    • 3 篇 物理学
    • 3 篇 地理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 94 篇 weakly supervise...
  • 16 篇 class activation...
  • 11 篇 semantic segment...
  • 10 篇 deep learning
  • 10 篇 training
  • 9 篇 image segmentati...
  • 9 篇 semantics
  • 5 篇 task analysis
  • 5 篇 attention mechan...
  • 4 篇 image-level labe...
  • 4 篇 weakly supervise...
  • 4 篇 contrastive lear...
  • 3 篇 annotations
  • 3 篇 feature extracti...
  • 2 篇 vision transform...
  • 2 篇 object detection
  • 2 篇 high-resolution ...
  • 2 篇 transformer
  • 2 篇 superpixel
  • 2 篇 magnetic resonan...

机构

  • 3 篇 korea adv inst s...
  • 2 篇 tianjin univ col...
  • 2 篇 beijing normal u...
  • 2 篇 univ elect sci &...
  • 2 篇 xian jiaotong li...
  • 2 篇 south china univ...
  • 2 篇 southwest jiaoto...
  • 1 篇 northeastern uni...
  • 1 篇 dalian univ key ...
  • 1 篇 gachon univ dept...
  • 1 篇 guangdong univ f...
  • 1 篇 huizhou univ hui...
  • 1 篇 huaqiao univ col...
  • 1 篇 shanghai ai lab ...
  • 1 篇 9 deng zhuang so...
  • 1 篇 loughborough uni...
  • 1 篇 yuxi normal univ...
  • 1 篇 univ michigan an...
  • 1 篇 monash univ fac ...
  • 1 篇 univ bonn bonn

作者

  • 3 篇 wu qingbo
  • 3 篇 meng fanman
  • 3 篇 li hongliang
  • 3 篇 yoon kuk-jin
  • 3 篇 zhou lei
  • 2 篇 kweon hyeokjun
  • 2 篇 zhang jiacai
  • 2 篇 huang guoheng
  • 2 篇 shen li
  • 2 篇 li zhilin
  • 2 篇 sohel ferdous
  • 2 篇 yoon sung-hoon
  • 2 篇 xu xiaolong
  • 2 篇 cai wentian
  • 2 篇 gao ying
  • 2 篇 bennamoun mohamm...
  • 2 篇 zhong guo
  • 2 篇 zhang yu
  • 2 篇 xu lian
  • 2 篇 yuan xiaochen

语言

  • 89 篇 英文
  • 5 篇 其他
检索条件"主题词=weakly supervised semantic segmentation"
94 条 记 录,以下是1-10 订阅
排序:
weakly supervised semantic segmentation via saliency perception with uncertainty-guided noise suppression
收藏 引用
VISUAL COMPUTER 2025年 第4期41卷 2891-2906页
作者: Liu, Xinyi Huang, Guoheng Yuan, Xiaochen Zheng, Zewen Zhong, Guo Chen, Xuhang Pun, Chi-Man Guangdong Univ Technol Guangzhou Peoples R China Macao Polytech Univ Macau Peoples R China Guangdong Univ Foreign Studies Guangzhou Peoples R China Huizhou Univ Huizhou Peoples R China Univ Macau Macau Peoples R China
weakly supervised semantic segmentation (WSSS) has become increasingly popular for achieving remarkable segmentation with only image-level labels. Current WSSS approaches extract Class Activation Mapping (CAM) from cl... 详细信息
来源: 评论
weakly supervised semantic segmentation for ancient architecture based on multiscale adaptive fusion and spectral clustering
收藏 引用
COMPUTERS & GRAPHICS-UK 2025年 126卷
作者: Sun, Ruifei Zhang, Sulan Su, Meihong Hu, Lihua Zhang, Jifu Taiyuan Univ Sci & Technol Sch Comp Sci & Technol Taiyuan 030024 Peoples R China
Existing methods of weakly supervised semantic segmentation for ancient architecture have several limitations including difficulty in capturing decorative details and achieving precise segmentation boundaries due to t... 详细信息
来源: 评论
M-SEE: A multi-scale encoder enhancement framework for end-to-end weakly supervised semantic segmentation
收藏 引用
PATTERN RECOGNITION 2025年 162卷
作者: Yang, Ziqian Zhao, Xinqiao Yao, Chao Zhang, Quan Xiao, Jimin Xian Jiaotong Liverpool Univ Suzhou Peoples R China UNIV LIVERPOOL LIVERPOOL England Univ Sci & Technol Beijing Beijing Peoples R China
End-to-end image-level weakly supervised semantic segmentation (WSSS) has received increasing attention due to its simple but effective implementation. It helps to alleviate the laborious annotation costs required in ... 详细信息
来源: 评论
Class activation map guided level sets for weakly supervised semantic segmentation
收藏 引用
PATTERN RECOGNITION 2025年 165卷
作者: Wang, Yifan Schaefer, Gerald Liu, Xiyao Dong, Jing Jing, Linglin Wei, Ye Xie, Xianghua Fang, Hui Loughborough Univ Dept Comp Sci Loughborough England Cent South Univ Sch Comp Sci & Engn Changsha Peoples R China Dalian Univ Key Lab Adv Design & Intelligent Comp Dalian Peoples R China Swansea Univ Dept Comp Sci Swansea Wales
weakly supervised semantic segmentation (WSSS) aims to achieve pixel-level fine-grained image segmentation using only weak guidance such as image-level class labels, thus significantly decreasing annotation costs. Des... 详细信息
来源: 评论
FL-W3S: Cross-domain federated learning for weakly supervised semantic segmentation of white blood cells
收藏 引用
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS 2025年 195卷 105806-105806页
作者: Madni, Hussain Ahmad Umer, Rao Muhammad Zottin, Silvia Marr, Carsten Foresti, Gian Luca Univ Udine Dept Comp Sci & Artificial Intelligence I-33100 Udine Italy Helmholtz Zentrum Munchen Inst AI Hlth D-85764 Munich Germany
Background: segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (F... 详细信息
来源: 评论
Contrastive activation maps with superpixel rectification for weakly supervised semantic segmentation: When superpixels meet CAMs ☆
收藏 引用
DIGITAL SIGNAL PROCESSING 2025年 162卷
作者: Shi, Huilin Liu, Yukun Wang, Shaofan Sun, Yanfeng Yin, Baocai Beijing Univ Technol Sch Informat Sci & Technol Beijing Key Lab Multimedia & Intelligent Software Beijing 100124 Peoples R China
The weakly supervised semantic segmentation (WSSS) task amounts to segmenting all pixels by using weaker annotations instead of pixel-level ones. It suffers from two ubiquitous issues: over-activation and under-activa... 详细信息
来源: 评论
Multi-representation fusion learning for weakly supervised semantic segmentation
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 277卷
作者: Li, Yongqiang Hu, Chuanping Ren, Kai Xi, Hao Fan, Jinhao Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou Peoples R China Zhengzhou Univ Sch Cyber Sci & Engn Zhengzhou Peoples R China Zhengzhou Univ Publ Secur Res Inst Zhengzhou Peoples R China
weakly supervised semantic segmentation (WSSS) with image-level labels offers a promising solution to the expensive problem of pixel-level annotation. However, the prevalent use of Class Activation Maps (CAMs), while ... 详细信息
来源: 评论
Optimizing multi-task network with learned prototypes for weakly supervised semantic segmentation
收藏 引用
SIGNAL PROCESSING-IMAGE COMMUNICATION 2025年 134卷
作者: Zhou, Lei Wang, Jiasong Luo, Jing Guo, Yuheng Li, Xiaoxiao Univ Shanghai Sci & Technol Shanghai Peoples R China Shanghai Waigaoqiao Shipbuilding & Offshore Co Ltd Shanghai Peoples R China Shanghai Inst Technol Shanghai Peoples R China
weakly supervised semantic segmentation (WSSS) presents a challenging task wherein semantic objects are extracted solely through the utilization of image-level labels as supervision. One common category of stateof-the... 详细信息
来源: 评论
weakly supervised semantic segmentation by a Class-Level Multiple Group Cosegmentation and Foreground Fusion Strategy
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2020年 第12期30卷 4823-4836页
作者: Meng, Fanman Luo, Kunming Li, Hongliang Wu, Qingbo Xu, Xiaolong Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 611731 Peoples R China
weakly supervised semantic segmentation uses image-level labels to extract object regions. The existing methods focus on efficiently training CNN-based segmentation networks using the image-level labels. In contrast t... 详细信息
来源: 评论
weakly supervised semantic segmentation by knowledge graph inference
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 138卷
作者: Zhang, Jia Peng, Bo Wu, Xi Hu, Jie Southwest Jiaotong Univ Sch Comp & Artificial Intelligence Chengdu 610031 Sichuan Peoples R China Chengdu Univ Informat Technol Sch Comp Sci Chengdu Peoples R China
The weakly supervised semantic segmentation (WSSS) training based on image-level labels in convolutional neural network (CNN) is usually divided into two stages: multi-label classification and semantic segmentation. H... 详细信息
来源: 评论