咨询与建议

限定检索结果

文献类型

  • 62 篇 期刊文献
  • 32 篇 会议

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 91 篇 工学
    • 65 篇 计算机科学与技术...
    • 43 篇 电气工程
    • 16 篇 软件工程
    • 12 篇 测绘科学与技术
    • 9 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 5 篇 电子科学与技术(可...
    • 3 篇 环境科学与工程(可...
    • 2 篇 机械工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 光学工程
    • 1 篇 动力工程及工程热...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
  • 29 篇 医学
    • 23 篇 临床医学
    • 5 篇 基础医学(可授医学...
    • 4 篇 特种医学
  • 15 篇 理学
    • 9 篇 地球物理学
    • 3 篇 物理学
    • 3 篇 地理学
    • 2 篇 数学
    • 2 篇 生物学
    • 1 篇 统计学(可授理学、...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 公共管理

主题

  • 94 篇 weakly supervise...
  • 16 篇 class activation...
  • 11 篇 semantic segment...
  • 10 篇 deep learning
  • 10 篇 training
  • 9 篇 image segmentati...
  • 9 篇 semantics
  • 5 篇 task analysis
  • 5 篇 attention mechan...
  • 4 篇 image-level labe...
  • 4 篇 weakly supervise...
  • 4 篇 contrastive lear...
  • 3 篇 annotations
  • 3 篇 feature extracti...
  • 2 篇 vision transform...
  • 2 篇 object detection
  • 2 篇 high-resolution ...
  • 2 篇 transformer
  • 2 篇 superpixel
  • 2 篇 magnetic resonan...

机构

  • 3 篇 korea adv inst s...
  • 2 篇 tianjin univ col...
  • 2 篇 beijing normal u...
  • 2 篇 univ elect sci &...
  • 2 篇 xian jiaotong li...
  • 2 篇 south china univ...
  • 2 篇 southwest jiaoto...
  • 1 篇 northeastern uni...
  • 1 篇 dalian univ key ...
  • 1 篇 gachon univ dept...
  • 1 篇 guangdong univ f...
  • 1 篇 huizhou univ hui...
  • 1 篇 huaqiao univ col...
  • 1 篇 shanghai ai lab ...
  • 1 篇 9 deng zhuang so...
  • 1 篇 loughborough uni...
  • 1 篇 yuxi normal univ...
  • 1 篇 univ michigan an...
  • 1 篇 monash univ fac ...
  • 1 篇 univ bonn bonn

作者

  • 3 篇 wu qingbo
  • 3 篇 meng fanman
  • 3 篇 li hongliang
  • 3 篇 yoon kuk-jin
  • 3 篇 zhou lei
  • 2 篇 kweon hyeokjun
  • 2 篇 zhang jiacai
  • 2 篇 huang guoheng
  • 2 篇 shen li
  • 2 篇 li zhilin
  • 2 篇 sohel ferdous
  • 2 篇 yoon sung-hoon
  • 2 篇 xu xiaolong
  • 2 篇 cai wentian
  • 2 篇 gao ying
  • 2 篇 bennamoun mohamm...
  • 2 篇 zhong guo
  • 2 篇 zhang yu
  • 2 篇 xu lian
  • 2 篇 yuan xiaochen

语言

  • 89 篇 英文
  • 5 篇 其他
检索条件"主题词=weakly supervised semantic segmentation"
94 条 记 录,以下是41-50 订阅
排序:
Hybrid Suppression and Attention with Online Augmentation for weakly supervised semantic segmentation  11
Hybrid Suppression and Attention with Online Augmentation fo...
收藏 引用
11th IEEE International Conference on Consumer Electronics - Taiwan (ICCE-Taiwan) - Empower of Innovative Consumer Technology
作者: Tseng, Li-An Guo, Jing-Ming Lin, Zi-Han Natl Taiwan Univ Sci & Technol Dept Elect Engn Taipei Taiwan
The primary approach in weakly supervised semantic segmentation involves utilizing a classification network to classify input images, extracting the model's regions of interest with Class Activation Maps (CAM), an... 详细信息
来源: 评论
Adversarial Erasing Framework via Triplet with Gated Pyramid Pooling Layer for weakly supervised semantic segmentation  1
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Yoon, Sung-Hoon Kweon, Hyeokjun Cho, Jegyeong Kim, Shinjeong Yoon, Kuk-Jin Korea Adv Inst Sci & Technol Daejeon South Korea
weakly supervised semantic segmentation (WSSS) has employed Class Activation Maps (CAMs) to localize the objects. However, the CAMs typically do not fit along the object boundaries and highlight only the most-discrimi... 详细信息
来源: 评论
Adversarial Decoupling for weakly supervised semantic segmentation  4th
Adversarial Decoupling for Weakly Supervised Semantic Segmen...
收藏 引用
4th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Sun, Guoying Yang, Meng Luo, Wenfeng Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp SYSU Guangzhou Peoples R China
Image semantic segmentation has been widely used in medical image analysis, autonomous driving and other fields. However, the fully-supervised semantic segmentation network requires a lot of labor cost to label pixel-... 详细信息
来源: 评论
A Self-Training Framework Based on Multi-Scale Attention Fusion for weakly supervised semantic segmentation
A Self-Training Framework Based on Multi-Scale Attention Fus...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yang, Guoqing Zhu, Chuang Zhang, Yu Beijing Univ Posts & Telecommun Beijing Peoples R China
weakly supervised semantic segmentation (WSSS) based on image-level labels is challenging since it is hard to obtain complete semantic regions. To address this issue, we propose a self-training method that utilizes fu... 详细信息
来源: 评论
Boat in the Sky: Background Decoupling and Object-aware Pooling for weakly supervised semantic segmentation  22
Boat in the Sky: Background Decoupling and Object-aware Pool...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Xu, Jianjun Xie, Hongtao Xu, Hai Wang, Yuxin Liu, Sun-ao Zhang, Yongdong Univ Sci & Technol China Hefei Peoples R China
Previous image-level weakly-supervised semantic segmentation methods based on Class Activation Map (CAM) have two limitations: 1) focusing on partial discriminative foreground regions and 2) containing undesirable bac... 详细信息
来源: 评论
Class Tokens Infusion for weakly supervised semantic segmentation
Class Tokens Infusion for Weakly Supervised Semantic Segment...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Yoon, Sung-Hoon Kwon, Hoyong Kim, Hyeonseong Yoon, Kuk-Jin Korea Adv Inst Sci & Technol Daejeon South Korea
weakly supervised semantic segmentation (WSSS) relies on Class Activation Maps (CAMs) to extract spatial information from image-level labels. With the success of Vision Transformer (ViT), the migration of ViT is activ... 详细信息
来源: 评论
A weakly supervised semantic segmentation Method on Lung Adenocarcinoma Histopathology Images  19th
A Weakly Supervised Semantic Segmentation Method on Lung Ade...
收藏 引用
19th International Conference on Advanced Intelligent Computing Technology and Applications (ICIC)
作者: Lan, Xiaobin Mei, Jiaming Lin, Ruohan Chen, Jiahao Zhang, Yanju Guilin Univ Elect Technol Guangxi Key Lab Image & Graph Intelligent Proc Guilin Guangxi Peoples R China Huaqiao Univ Coll Comp Sci & Technol Xiamen Peoples R China Huaqiao Univ Xiamen Key Lab CVPR Xiamen Peoples R China
Accurately distinguishing different tissues is crucial for pathologists to determine the type and degree of lesions. The methods based on class activation maps (CAM) are popular in current research due to their low an... 详细信息
来源: 评论
Leveraging Swin Transformer for Local-to-Global weakly supervised semantic segmentation  13
Leveraging Swin Transformer for Local-to-Global Weakly Super...
收藏 引用
13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP)
作者: Ahmadi, Rozhan Kasaei, Shohreh Sharif Univ Technol Dept Comp Engn Tehran Iran
In recent years, weakly supervised semantic segmentation using image-level labels as supervision has received significant attention in the field of computer vision. Most existing methods have addressed the challenges ... 详细信息
来源: 评论
Multiscale Superpixel Affinity for Improved weakly supervised semantic segmentation  36
Multiscale Superpixel Affinity for Improved Weakly Supervise...
收藏 引用
36th Chinese Control and Decision Conference (CCDC)
作者: Fu, Yun Wang, Wenwu Zhu, Lei Wuhan Univ Sci & Technol Sch Informat Sci & Engn Wuhan Peoples R China
weakly supervised semantic segmentation based on image-level labels typically employs strategies of modifying and expanding class activation map(CAM) seeds to achieve semantic segmentation. However, network downsampli... 详细信息
来源: 评论
Hunting Attributes: Context Prototype-Aware Learning for weakly supervised semantic segmentation
Hunting Attributes: Context Prototype-Aware Learning for Wea...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Tang, Feilong Xu, Zhongxing Qu, Zhaojun Feng, Wei Jiang, Xingjian Ge, Zongyuan Monash Univ Fac IT AIM Lab Clayton Vic Australia Monash Univ Fac IT Clayton Vic Australia Cornell Univ Weill Cornell Med Ithaca NY 14853 USA Xian Jiaotong Liverpool Univ Suzhou Peoples R China Univ Michigan Ann Arbor MI 48109 USA
Recent weakly supervised semantic segmentation (WSSS) methods strive to incorporate contextual knowledge to improve the completeness of class activation maps (CAM). In this work, we argue that the knowledge bias betwe... 详细信息
来源: 评论