咨询与建议

限定检索结果

文献类型

  • 17 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 29 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 7 篇 软件工程
    • 3 篇 信息与通信工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 测绘科学与技术
  • 11 篇 医学
    • 7 篇 临床医学
    • 5 篇 特种医学
  • 5 篇 理学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 化学
    • 1 篇 地理学
    • 1 篇 生物学

主题

  • 33 篇 weakly-supervise...
  • 6 篇 deep learning
  • 4 篇 semantic segment...
  • 3 篇 image segmentati...
  • 3 篇 training
  • 2 篇 task analysis
  • 2 篇 image-level labe...
  • 2 篇 semantics
  • 2 篇 image classifica...
  • 2 篇 single-stage
  • 2 篇 convolutional ne...
  • 2 篇 class activation...
  • 1 篇 dense regression...
  • 1 篇 covid-19
  • 1 篇 vision transform...
  • 1 篇 tools
  • 1 篇 visual words lea...
  • 1 篇 transformer
  • 1 篇 autonomous drivi...
  • 1 篇 histopathology i...

机构

  • 2 篇 sun yat sen univ...
  • 2 篇 northwest normal...
  • 2 篇 key lab cloud co...
  • 1 篇 wuhan univ liesm...
  • 1 篇 nanjing univ sch...
  • 1 篇 east china norma...
  • 1 篇 univ electro com...
  • 1 篇 ecole polytech f...
  • 1 篇 uppsala univ upp...
  • 1 篇 xiamen univ sch ...
  • 1 篇 australian natl ...
  • 1 篇 wuhan univ natl ...
  • 1 篇 guangxi normal u...
  • 1 篇 ecole polytech f...
  • 1 篇 jd explore acad ...
  • 1 篇 northwestern pol...
  • 1 篇 tsinghua univ th...
  • 1 篇 northwestern pol...
  • 1 篇 sapienza diag ro...
  • 1 篇 shanghai jiao to...

作者

  • 2 篇 yanai keiji
  • 2 篇 shimoda wataru
  • 2 篇 li xiaolong
  • 2 篇 ma huifang
  • 2 篇 wang chen
  • 2 篇 zhang di
  • 2 篇 li zhixin
  • 1 篇 saleh fatemeh sa...
  • 1 篇 bonnin-pascual f...
  • 1 篇 tian zhiqiang
  • 1 篇 li zhenshi
  • 1 篇 wang wenye
  • 1 篇 yao kai
  • 1 篇 chen junliang
  • 1 篇 ma andy j.
  • 1 篇 onozuka yuya
  • 1 篇 wang haonan
  • 1 篇 du youtian
  • 1 篇 benitez-garcia g...
  • 1 篇 she jinwen

语言

  • 33 篇 英文
检索条件"主题词=weakly-supervised semantic segmentation"
33 条 记 录,以下是11-20 订阅
排序:
Self-Attention Prediction Correction with Channel Suppression for weakly-supervised semantic segmentation
Self-Attention Prediction Correction with Channel Suppressio...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Sun, Guoying Yang, Meng Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xian Peoples R China Sun Yat Sen Univ Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
Single-stage weakly-supervised semantic segmentation (WSSS) with image-level labels has become a new research hotspot in the community for its lower cost and higher training efficiency. However, the pseudo label of WS... 详细信息
来源: 评论
Global Consistency Enhancement Network for weakly-supervised semantic segmentation  6th
Global Consistency Enhancement Network for Weakly-Supervised...
收藏 引用
6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Jiang, Le Yang, Xinhao Ma, Liyan Li, Zhenglin Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China Shanghai Univ Sch Artificial Intelligence Shanghai Peoples R China
Generation methods for reliable class activation maps (CAMs) are essential for weakly-supervised semantic segmentation. These methods usually face the challenge of incomplete and inaccurate CAMs due to intra-class inc... 详细信息
来源: 评论
Deconfounded multi-organ weakly-supervised semantic segmentation via causal intervention
收藏 引用
INFORMATION FUSION 2024年 108卷
作者: Chen, Kaitao Sun, Shiliang Du, Youtian East China Normal Univ Sch Comp Sci & Technol Shanghai 200062 Peoples R China Shanghai Jiao Tong Univ Dept Automat Shanghai 200240 Peoples R China Xi An Jiao Tong Univ Sch Automat Sci & Engn Xian 710049 Peoples R China
In weakly-supervised semantic segmentation, obtaining the class activation maps for pseudo masks is crucial. Since multiple organs appear in the same medical image, it is reasonable to obtain the activation maps of ea... 详细信息
来源: 评论
Pseudo-Label-Free weakly supervised semantic segmentation Using Image Masking
收藏 引用
IEEE ACCESS 2022年 10卷 19401-19411页
作者: Kim, Sangtae Luong Trung Nguyen Shim, Kyuhong Kim, Junhan Shim, Byonghyo Seoul Natl Univ Dept Elect & Comp Engn Seoul 08826 South Korea
weakly-supervised semantic segmentation (WSSS) aims to train a semantic segmentation network using weak labels. Recent approaches generate the pseudo-label from the image-level label and then exploit it as a pixel-lev... 详细信息
来源: 评论
Enhancing weakly supervised semantic segmentation through Patch-Based Refinement  13
Enhancing Weakly Supervised Semantic Segmentation through Pa...
收藏 引用
13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP)
作者: Tajrishi, Narges Javid Afshar, Sepehr Amini Kasaei, Shohreh Sharif Univ Technol Dept Comp Engn Tehran Iran
weakly-supervised semantic segmentation (WSSS) with image-level labels, commonly uses Class Activation Maps (CAM) to generate pseudo-labels. However, Convolutional Neural Networks (CNNs), with their limited local rece... 详细信息
来源: 评论
Max Pooling with Vision Transformers Reconciles Class and Shape in weakly supervised semantic segmentation  17th
Max Pooling with Vision Transformers Reconciles Class and Sh...
收藏 引用
17th European Conference on Computer Vision (ECCV)
作者: Rossetti, Simone Zappia, Damiano Sanzari, Marta Schaerf, Marco Pirri, Fiora DeepPlants Rome Italy Sapienza DIAG Rome Italy
weakly supervised semantic segmentation (WSSS) research has explored many directions to improve the typical pipeline CNN plus class activation maps (CAM) plus refinements, given the image-class label as the only super... 详细信息
来源: 评论
Dual semantic-guided model for weakly-supervised zero-shot semantic segmentation
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第4期81卷 5443-5458页
作者: Shen, Fengli Lu, Zhe-Ming Lu, Ziqian Wang, Zonghui Zhejiang Univ Sch Aeronaut & Astronaut Hangzhou 310027 Peoples R China Zhejiang Univ Coll Comp Sci & Technol Hangzhou 310027 Peoples R China
The major obstacle in semantic segmentation is that it requires a large number of pixel-level labeled data to train an effective model. In order to reduce the cost of annotation, weakly-supervised methods use weaker l... 详细信息
来源: 评论
Transformer Based Prototype Learning for weakly-supervised Histopathology Tissue semantic segmentation  1
收藏 引用
32nd International Conference on Artificial Neural Networks (ICANN)
作者: She, Jinwen Hu, Yanxu Ma, Andy J. Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou Peoples R China
weakly-supervised semantic segmentation for computational pathology has the great potential to alleviate the time-consuming and labor-intensive burden of manual pixel-level annotations. Existing methods relying on cla... 详细信息
来源: 评论
SSA: semantic structure aware inference on CNN networks for weakly pixel-wise dense predictions without cost
收藏 引用
Frontiers of Computer Science 2025年 第2期19卷 1-10页
作者: Yanpeng SUN Zechao LI School of Computer Science and Engineering Nanjing University of Science and TechnologyNanjing 210014China
The pixel-wise dense prediction tasks based on weakly supervisions currently use Class Attention Maps(CAMs)to generate pseudo masks as ***,existing methods often incorporate trainable modules to expand the immature cl... 详细信息
来源: 评论
Local optimization cropping and boundary enhancement for end-to-end weakly-supervised segmentation network
收藏 引用
COMPUTER VISION AND IMAGE UNDERSTANDING 2025年 251卷
作者: Wang, Weizheng Zeng, Chao Wang, Haonan Zhou, Lei Changsha Univ Sci & Technol Changsha 410000 Peoples R China
In recent years, the performance of weakly-supervised semantic segmentation(WSSS) has significantly increased. It usually employs image-level labels to generate Class Activation Map (CAM) for producing pseudo-labels, ... 详细信息
来源: 评论