With continuous urban densification, revealing impacts of urban structures on thermal environment is necessary for climate adaptive design. In this study, random forest and partial difference plots were employed to de...
With continuous urban densification, revealing impacts of urban structures on thermal environment is necessary for climate adaptive design. In this study, random forest and partial difference plots were employed to depict the relative importance and interdependent effects of complex building morphology to land surface temperature (LST) variability. The six spatial factors of building density (BD), mean building height (MBH), building height difference (BHD), floor area ratio (FAR), building volume density (BVD) and mean compactness factor (MCF) were calculated at grids of 90, 300, 600 and 900 m. The results showed that BD, MCF and MBH exerted stable and significant impacts on LST with the highest prediction accuracy at 600 m neighborhood scale, and FAR and BVD were the least correlated to LST changes. Meanwhile, the influencing factors presented different correlation patterns with LST. Among them, the increase of BD had a positive linear effect on LST. MCF and MBH were nonlinearly correlated with the LST variation, and their threshold values of cooling effect were also identified. In addition to controlling BD, it also suggested that comprehensively arranging more small-volume buildings as well as increasing building height to enlarge shadow coverage were more conducive to ground heat mitigation.
Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to gener...
Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at similar to 3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures.
暂无评论