Shoot architecture and flowering time in angiosperms depend on the balanced expression of a large number of flowering time and flower meristem identity genes. Loss-of-function mutations in the Arabidopsis EMBRYONIC FL...
详细信息
Shoot architecture and flowering time in angiosperms depend on the balanced expression of a large number of flowering time and flower meristem identity genes. Loss-of-function mutations in the Arabidopsis EMBRYONIC FLOWER (EMF) genes cause Arabidopsis to eliminate rosette shoot growth and transform the apical meristem from indeterminate to determinate growth by producing a single terminal flower on all nodes. We have identified the EMF1 gene by positional cloning. The deduced polypeptide has no homology with any protein of known function except a putative protein in the rice genome with which EMF1 shares common motifs that include nuclear localization signals, P-loop, and LXXLL elements. Alteration of EMF1 expression in transgenic plants caused progressive changes in flowering time, shoot determinacy, and inflorescence architecture. EMF1 and its related sequence may belong to a new class of proteins that function as transcriptional regulators of phase transition during shoot development.
Introduction: Magnetic resonance imaging (MRI)-determined atrophy of the nucleus basalis of Meynert (Ch4) predicts cognitive decline in Parkinson's disease (PD). However, interactions with other brain regions caus...
详细信息
Introduction: Magnetic resonance imaging (MRI)-determined atrophy of the nucleus basalis of Meynert (Ch4) predicts cognitive decline in Parkinson's disease (PD). However, interactions with other brain regions causing the decline remain unclear. This study aimed to describe how MRI-determined Ch4 atrophy leads to cognitive decline in patients with PD. Methods: We evaluated 137 patients with PD and 39 healthy controls using neuropsychological examinations, MRI, and I-123-ioflupane single-photon emission computed tomography. First, we explored brain areas with regional gray matter loss correlated with Ch4 volume reduction using voxel-based morphometry (VBM). We then assessed the correlation between Ch4 volume reduction and cognitive impairments in PD using partial correlation coefficients (r(par)). Finally, we examined whether the regional gray matter loss mediated the association between Ch4 volume reduction and cognitive impairments using mediation analysis. Results: Our PD cohort was "advanced-stage enriched." VBM analyses revealed that Ch4 volume loss was correlated with volume reduction in the medial temporal lobe in PD (P < 0.05, family-wise error corrected, >29 voxels). Ch4 volume reduction was significantly correlated with verbal memory deficits in PD when adjusted for age, sex, total brain volume, and I-123-ioflupane uptake in the caudate (r(par) = 0.28, P < 0.001). The mediation analysis revealed that the hippocampus mediated the effects of Ch4 volumes on verbal memory (average causal mediation effect = 0.013, 95 % CI = 0.006-0.020, P < 0.001). Conclusion: Particularly in advanced-stage PD, Ch4 atrophy was associated with medial temporal lobe atrophy, which played an intermediary role in the relationship between Ch4 atrophy and verbal memory impairments.
暂无评论