数据挖掘技术能有效解决孤岛检测中检测阈值的整定问题,已成为重要的孤岛检测方法。文中提出由关键特征识别、基学习器和元学习器等3个环节构成的孤岛检测数据挖掘系统。首先,分析了孤岛检测样本中的弱相关特征对分类的不利影响,提出利用RELIEF(recursive elimination of features)算法首先识别孤岛检测的关键特征。然后,分析了单一分类器的归纳偏置现象,提出利用多个分类器的互补性提高孤岛检测的精度;最后,提出了基于元学习的新的孤岛检测方法。为验证上述方法的有效性,仿真算例中充分考虑了功率不平衡度、电压扰动等因素。仿真结果表明,上述3个环节对提高孤岛检测的精度和泛化能力具有重要作用。
工业系统中广泛存在一类由多个相互关联的子系统组成的大系统.尽管分布式控制结构的性能没有集中式控制好,但由于其具有较高的灵活性和容错性,相对于集中控制更加适合控制上述系统.在保持容错性的情况下如何提高系统的整体性能是分布式控制的一个难点问题.本文提出了一种分布式预测控制(Distributed model predictive control,DMPC)方法,该方法通过在各子系统预测控制器的性能指标中加入输入变量对其下游子系统的影响的二次函数,来扩大分布式预测控制的协调度,进而在不增加网络连通度,不改变系统容错性的前提下,提高系统的性能.另外,本文给出了基于该协调策略的带输入约束的分布式预测控制器的设计方法,在初始可行的前提下,该方法相继可行并可保证系统渐近稳定.
暂无评论