短文本相比于长文本词汇的数量更少,提取其中的语义特征信息更加困难,利用传统的向量空间模型VSM(vector space model)向量化表示,容易得到高维稀疏的向量。词的稀疏表示缺少语义相关性,造成语义鸿沟,从而导致下游聚类任务中,准确率低下...
详细信息
短文本相比于长文本词汇的数量更少,提取其中的语义特征信息更加困难,利用传统的向量空间模型VSM(vector space model)向量化表示,容易得到高维稀疏的向量。词的稀疏表示缺少语义相关性,造成语义鸿沟,从而导致下游聚类任务中,准确率低下,容易受噪声干扰等问题。提出一种新的聚类模型BERT;E;-Means,利用预训练模型BERT(bidirectional encoder representations from transformers)作为文本表示的初始化方法,利用自动编码器AutoEncoder对文本表示向量进行自训练以提取高阶特征,将得到的特征提取器Encoder和聚类模型K-Means进行联合训练,同时优化特征提取模块和聚类模块,提高聚类模型的准确度和鲁棒性。所提出的模型在四个数据集上与Word2Vec;-Means和STC2等6个模型相比,准确率和标准互信息都有所提高,在SearchSnippet数据集上的准确率达到82.28%,实验结果显示,所提方法有效地提高了短文本聚类的准确度。
车载控制器局域网(Controller Area Network,CAN)连接着智能网联汽车系统的核心电子控制单元,对于保证汽车系统的安全性至关重要。由于其缺乏足够的信息安全措施,容易遭受拒绝服务(Denial of Service,DoS)攻击、重放攻击、模糊攻击等,...
详细信息
车载控制器局域网(Controller Area Network,CAN)连接着智能网联汽车系统的核心电子控制单元,对于保证汽车系统的安全性至关重要。由于其缺乏足够的信息安全措施,容易遭受拒绝服务(Denial of Service,DoS)攻击、重放攻击、模糊攻击等,给汽车系统及驾乘人员带来严重安全威胁。文章通过分析车载CAN面临的信息安全威胁,提取CAN报文在报文ID、时间间隔、数据字段中的通信特征,提出一种基于长短期记忆(Long Short Term Memory,LSTM)的CAN入侵检测模型,该模型能有效保留CAN报文的时序特征,在CAN遭受攻击时检测攻击行为以及对应的攻击类型。实验结果表明,该模型的攻击检测精度达99.99%。
针对在无约束环境下静态手势在识别过程中准确率不高的问题,本文提出了一种融合手部骨架灰度图(Grayscale Image of Hand Skeleton,GHS)的深度神经网络,使用手部关键点及其相互关联性构建手部骨架灰度图。网络的输入为GHS图像和RGB图像...
详细信息
针对在无约束环境下静态手势在识别过程中准确率不高的问题,本文提出了一种融合手部骨架灰度图(Grayscale Image of Hand Skeleton,GHS)的深度神经网络,使用手部关键点及其相互关联性构建手部骨架灰度图。网络的输入为GHS图像和RGB图像,主干网络为yolov3,添加了扩展卷积残差模块,在GHS图像和RGB图像进行特征融合后,通过SE模块对每个通道上的特征进行缩放,采用RReLU激活函数来代替Leaky ReLU激活函数。通过手部关键点及其相互间的连接信息增强手部图像特征,增大手势的类间差异,同时降低无约束环境对手势识别的影响,以提高手势识别的准确率。实验结果表明,在Microsoft Kinect&Leap Motion数据集上相比其他方法,本文方法的平均准确率达到最高,为99.68%;在Creative Senz3D数据集上相比其他方法,本文方法平均准确率达到最高,为99.8%。
暂无评论