This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference gener...
详细信息
This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference generator using sub-threshold techniques. The chip maintains a steady system clock in a temperature range from - 40 to 100℃. Some novel building blocks are developed to save system power consumption,including a zero static current power-on reset circuit and a voltage regulator. The RF/analog front-end circuit is implemented with digital base-band and EEPROM to construct a whole tag chip in 0. 18μm CMOS EEPROM technology without Schottcky diodes. Measured results show that the chip has a minimum supply voltage requirement of 0.75V. At this voltage, the total current consumption of the RF/analog frontend circuit is 4.6μA.
Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed wit...
详细信息
Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.
暂无评论