事件抽取旨在从大量无结构的文本中抽取出结构化的事件信息,然而现有的研究工作存在难以抽取重叠角色,子任务间缺乏交互以及语义特征表达能力不足的问题。针对上述问题提出了一种中文事件抽取模型PACJEE(pre-trained language model and...
详细信息
事件抽取旨在从大量无结构的文本中抽取出结构化的事件信息,然而现有的研究工作存在难以抽取重叠角色,子任务间缺乏交互以及语义特征表达能力不足的问题。针对上述问题提出了一种中文事件抽取模型PACJEE(pre-trained language model and attention mechanism based Chinese joint event extraction)。该模型采用预训练语言模型RoBERTa来提取文本特征,对文本进行事件类型分类,在触发词识别阶段,将提取到的事件类型先验特征与文本特征进行融合,并且使用自注意力机制获取内部特征相关性,在论元角色分类阶段引入卷积神经网络与注意力机制来加强触发词特征的表达能力,通过多层指针标注进行重叠角色的识别。该方法在中文数据集ACE2005和DuEE上进行了实验分析,结果显示,相较于基准方法,在触发词分类上的F1值分别提升1.6和0.5个百分点,在论元角色分类上的F1值分别提升3.3和2.5个百分点,说明该模型能显著提升事件抽取效果,并且在一定程度上提升了对角色重叠事件的识别准确率。
暂无评论