提出并验证了一种基于可调有源双耦合器环级联复合腔(Active dual-coupler ring based compound-cavity,ADCR-CC)滤波器的2 μm波段单纵模(Single-longitudinal-mode,SLM)铥钬共掺光纤激光器.将具有可调滤波带宽和透射率的ADCR-CC滤波...
详细信息
提出并验证了一种基于可调有源双耦合器环级联复合腔(Active dual-coupler ring based compound-cavity,ADCR-CC)滤波器的2 μm波段单纵模(Single-longitudinal-mode,SLM)铥钬共掺光纤激光器.将具有可调滤波带宽和透射率的ADCR-CC滤波器与光纤布拉格光栅(Fiber Bragg grating,FBG)结合,实现了 SLM激光输出.当主腔和复合腔的泵浦功率分别为1.8 W和1.1 W时,测得的激光器输出波长为2 048.510 nm,光信噪比高达83.08 dB,90 min内的最大光谱中心波长和光谱峰值功率波动分别为0.006 nm和0.19 dB,激光器输出功率为50.03 mW.使用等强度悬臂梁对FBG引入应变调节,SLM激光可在1.45 nm范围内实现波长的可调谐输出.
近年来,移动边缘计算(Mobile Edge Computing,MEC)技术的持续发展和应用成功地应对了随着终端用户数量急剧增加而导致网络边缘数据量爆炸性增长的用户服务需求.然而,如何实时优化分配这些服务器给不同用户仍然是一个亟待解决的紧迫问题.本文专注于多用户多MEC服务器场景中任务缓存和计算卸载策略的联合优化问题,借助于强化学习算法分别解决这两个子问题.在任务缓存方面,本文以最大化系统缓存命中率为目标,引入了基于Gomory割平面的多臂选择算法(Gomory Based Multi-Arm Selection,GMAS)来适应不同任务数据量的差异,并通过理论证明了算法遗憾上界的对数性.而在任务卸载方面,提出了Dueling架构的双重Q网络(Double DQN with Dueling architecture,D3QN)算法以应对多用户多MEC服务器中的任务卸载问题,该算法在保证任务性能的同时有效规避了DQN算法中Q值过估计的问题.仿真结果表明,本文所提出的算法在时延和能耗等方面相较A3C和DQN算法表现出明显的优势.
暂无评论