超低碳钢显微组织为铁素体,在制样过程中极易出现划痕和晶界腐蚀不清晰的现象,严重影响金相组织分析。同时,显微组织特征的分析结果严重依赖于专家经验,受主观因素影响较大且效率低。为了高效获得超低碳钢显微组织特征信息,基于超低碳钢金相图像数据集,采用归一化、自适应阈值法处理图像,增强图像对比度;融合自注意力机制(Self-Attention,SA)和循环回归生成对抗神经网络(CycleGan),开发基于CycleGan+SA的晶界增强算法;建立超低碳钢显微组织特征强化模型,实现了显微组织图像的自动处理与晶界信息的特征强化。在此基础上,采用分水岭分割算法对晶界强化后的显微组织图像进行精细化分析。结果表明,CycleGan+SA算法可以有效去除原始金相图像中的划痕并补全晶界模糊区域,实现超低碳钢晶界特征强化。相比原始的CycleGan算法,引入注意力机制后,CycleGan+SA算法可以实现更清晰的晶粒分割,图像识别精确度P值由97.43%提升至98.75%,综合评价指标F值由97.49%提升至98.73%。在显微组织精细化分析方面,通过与常用分析软件对比,超低碳钢显微组织特征强化模型与Image J软件测定的晶粒尺寸平均误差为1.2个晶粒,与Image Pro Plus软件测定的晶界比例误差为0.008个百分点,模型与软件统计结果吻合较好,具备一定的应用前景。
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learn...
详细信息
为了研究钢轨的化学成分、入口温度、环境温度,以及风冷时风压、风速等参数对热处理钢轨性能的综合影响,进一步解决钢轨热处理后设定精度低的难题,开发了一种基于灰狼算法优化深度极限学习机(grey wolf optimization deep extreme learning machine,GWO-DELM)的钢轨热处理性能预测模型.先采用深度极限学习机(DELM)构建出工艺模型,而后,针对深度极限学习机中初始权值随机确定而引起的预测结果准确度较低的问题,利用灰狼优化算法(GWO)对初始权值进一步确定.结果表明:该模型在预测不同规格钢轨的抗拉强度时,95.80%以上样本点的预测误差集中在-20~20 MPa,在预测踏面布氏硬度时,95.73%以上样本点的预测误差集中在-8~8;与传统模型相比,GWO-DELM具有更优异的预测精度及泛化能力,可应用在热轧钢轨风冷处理的性能预测上,为热处理参数的选择提供参考.
暂无评论