针对软件缺陷报告严重性预测中现有模型分类精度较低、深层次的语义特征不够丰富等问题,本文提出了一种基于BERT句子级别与词级别特征融合的SWF-BERT(Sentence-level and Word-level features Fusion-BERT)软件缺陷报告严重性预测模型....
详细信息
针对软件缺陷报告严重性预测中现有模型分类精度较低、深层次的语义特征不够丰富等问题,本文提出了一种基于BERT句子级别与词级别特征融合的SWF-BERT(Sentence-level and Word-level features Fusion-BERT)软件缺陷报告严重性预测模型.首先,对缺陷报告中的文本进行了数据预处理.其次,为了加强嵌入层中融合后的特征语义信息,提取词频最高的前100个单词,筛选出与缺陷严重性相关的特征词对其进行关键词嵌入操作,并融合嵌入层中的其他向量进行词嵌入.最后,将BERT模型输出层得到的特征(除[CLS]token外)送入多尺度卷积神经网络结合长短期记忆网络(MC-LSTM)模型中,加强了不同特征间远距离的时序信息.采用BERT模型输出得到的[CLS]句向量经过线性变换的结果与MC-LSTM模型输出经过线性变换得到的结果做可学习的自适应加权融合,实现了对软件缺陷报告严重性的有效预测.实验结果表明,使用SWF-BERT模型的平均准确率、召回率和F1值在Mozilla数据集中分别达到了68.41%、64.60%和64.86%,在Eclipse数据集中分别达到了61.32%、62.62%和59.31%,与其他分类算法相比,该方法在性能上得到了较大的提升.
为解决森林冠层图像因结构复杂,提取时受光照不均的影响而导致分割精度低的问题,采用一种基于自适应调整策略的混沌藤壶交配优化算法(Chaotic Adaptive Barnacle Mating Optimization,CABMO)的森林冠层图像分割方法。首先采用Logistic混沌映射初始化藤壶种群以提高算法的探索能力;然后设计非线性递增阴茎系数使探索和开发之间更平衡;最后将Kapur熵作为适应度函数,利用CABMO算法选取适应度函数的最优值,降低复杂度的同时,加强阈值的搜索效率。为验证CABMO算法在森林冠层图像分割上的有效性,以适应度值、峰值信噪比值(Peak Signal to Noise Ratio,PSNR)、特征相似性指数测试值(feature similarity index mersure,FSIM)和计算时间作为性能指标来评估分割效果。研究结果表明,在适应度值、PSNR值和FSIM值上CABMO算法分别以100%、99%、97.9%的占比优于对比算法,在计算时间上100%优于基本藤壶交配优化算法(Barnacle Mating Optimization,BMO)。结果表明,CABMO算法在提高森林冠层图像分割精度的同时也获得了更高质量的分割图像。
暂无评论