针对树木三维重构过程中面临的处理速度慢、重构精度低等问题,提出一种采用激光点云数据的单木骨架三维重构方法。首先,根据点云数据类型确定组合滤波方式,以去除离群点和地面点;其次,采用一种基于内部形态描述子(ISS)和相干点漂移算法(CPD)的混合配准算法(Intrinsic Shape-Coherent Point Drift,IS-CPD),以获取单棵树木的完整点云数据;最后,采用Laplace收缩点集和拓扑细化相结合的方法提取骨架,并通过柱体构建枝干模型,实现骨架三维重构。试验结果表明,相比传统CPD算法,研究设计的配准方案精度和执行速度分别提高50%和95.8%,最终重构误差不超过2.48%。研究结果证明可有效地重构单棵树木的三维骨架,效果接近树木原型,为构建林木数字孪生环境和林业资源管理提供参考。
中文司法领域的实体和关系抽取技术在提高办案效率方面具有重要作用,但现有的关系抽取模型缺乏领域知识且难以处理重叠实体,造成难以准确区分和提取实体与关系等问题.通过引入领域知识,提出一种法律信息增强模块,增强了用所提法律潜在关系与全局对应(legal potential relationship and global correspondence,LPRGC)模型理解法律文本中术语、规则和上下文信息的能力,从而提高了实体和关系的识别准确性,进而提升了实体和关系抽取算法的性能.为解决重叠实体问题,设计了一种基于潜在关系和实体对齐的关系抽取方法.通过精确标注实体位置,筛选潜在关系,并利用全局矩阵对齐实体,解决重叠实体的关系抽取问题,能够更准确地捕捉到重叠实体之间的关系,并有效地将其映射到正确的实体对上,从而提高抽取结果的准确性.在中国法律智能技术评测数据集上进行实体和关系抽取实验,结果表明,LPRGC模型的准确率、召回率和F_(1)值分别为85.21%、81.19%和83.15%,均优于对比模型,特别是在处理实体重叠问题时,LPRGC模型在单实体重叠类型的抽取中,F_(1)值达到了81.45%;在多实体重叠类型的抽取中,F_(1)值达80.67%.LPRGC模型在实体和关系抽取的准确性上较现有方法有明显改进,在处理复杂法律文本中的实体重叠问题上取得了显著效果.
开集分类识别是近10多年来模式识别领域研究的热点,它能够识别训练集中已知类别的测试样本,同时还能够有效“拒识”未知类别的测试样本;这些未知类别样本不包含在训练集中。现有的开集分类识别算法主要是基于Support Vector Machine(SVM)和深度学习网络框架进行改进,并且主要应用在自然景物图像领域中;在光谱分析领域中还鲜有报道。将传统的闭集框架下的模糊推理分类器进行模型改进,提出了开集框架下的改进模糊推理分类器,并将其应用到木材树种近红外光谱分类识别中。首先,使用Flame-NIR近红外微型光谱仪采集木材样本横切面的近红外光谱曲线,采用Metric Learning算法进行光谱向量维度约简降维至4维(4D)。其次,改进闭集框架下的模糊推理分类器,根据模糊规则置信度和各维度隶属度概率的乘积构建Generalized Basic Probability Assignment(GBPA),再根据GBPA进行分类处理。在20个树种的具有不同的Openness指标下的近红外光谱数据集的分类识别对比实验表明,改进的开集模糊推理分类器(fuzzy reasoning classifier in an open set,FRCOS)优于现有的基于机器学习和深度学习的开集分类识别主流算法,具有较好的评价指标F-Score,Kappa系数及总体识别率。
暂无评论