为验证收发器硬件损耗对通信系统性能的影响,在考虑收发器硬件损耗的情况下,对智能反射面(intelligent reflecting surface,IRS)辅助的携能通信(simultaneous wireless information and power transfer,SWIPT)系统的鲁棒性传输设计进行...
详细信息
为验证收发器硬件损耗对通信系统性能的影响,在考虑收发器硬件损耗的情况下,对智能反射面(intelligent reflecting surface,IRS)辅助的携能通信(simultaneous wireless information and power transfer,SWIPT)系统的鲁棒性传输设计进行研究.在考虑基站的最大发射功率、能量收集器的最小接收能量和IRS无源波束成形的约束下,将优化目标设为最大化所有信息接收者的加权和速率,并使用块坐标下降(block coordinate descent,BCD)算法将优化问题分解成多个优化子问题,交替优化.对于基站有源波束成形和IRS无源波束成形的优化问题,分别采用拉格朗日对偶方法和最优化最大化(majorization minimization,MM)算法来解决.仿真结果验证了收发器硬件损耗对系统性能的影响,也证实了信息接收端的硬件损耗要比基站发射端的硬件损耗对系统造成的性能下降更明显.
多天线技术通过在收发端部署天线阵列,从而提供额外的空间自由度(degrees of freedom,DoFs),大幅提升了无线通信的可靠性与有效性。与此同时,多天线技术应用于雷达感知领域,实现了空间角度分辨能力并提升了感知自由度,大幅增强了无线感...
详细信息
多天线技术通过在收发端部署天线阵列,从而提供额外的空间自由度(degrees of freedom,DoFs),大幅提升了无线通信的可靠性与有效性。与此同时,多天线技术应用于雷达感知领域,实现了空间角度分辨能力并提升了感知自由度,大幅增强了无线感知性能。然而,无线通信与雷达感知领域在过去数十年里独立发展。因此,尽管多天线技术在这两个领域分别取得了巨大的进步,但并没有通过发挥它们的协同作用来实现深度融合。随着感知与通信的融合被确定为第六代(the sixth-generation,6G)移动通信网络的典型应用场景之一,多天线技术的发展面临新的机遇以填补上述空白。为此,本文围绕未来天线阵列规模持续扩张、阵列架构更加多样、阵列形态更为灵活等发展趋势,对面向6G通信感知一体化的多天线技术进行综述。首先介绍未来多天线的不同架构类型,包括以传统紧凑式阵列和新兴稀疏阵列为代表的集中式阵列架构、以无蜂窝大规模MIMO(multiple-input multiple-output)为代表的分布式天线架构,以及三维连续空间阵元位置与朝向灵活可调的可移动天线/流体天线。然后,本文将介绍基于上述天线架构的远场/近场信道建模,并进行通信与感知性能分析。最后总结不同天线架构的特点,并展望解决因天线阵列规模的持续扩展及阵列形态的灵活多变引起的信道状态信息获取困难的新思路。
暂无评论