为了提高多元低密度奇偶校验(LDPC,low density parity-check)码符号翻转译码算法的性能并降低译码的复杂度,提出了基于平均概率和停止准则的多元LDPC码加权符号翻转译码(APSCWSF,average probability and stopping criterion weight...
详细信息
为了提高多元低密度奇偶校验(LDPC,low density parity-check)码符号翻转译码算法的性能并降低译码的复杂度,提出了基于平均概率和停止准则的多元LDPC码加权符号翻转译码(APSCWSF,average probability and stopping criterion weighted symbol flipping)算法。该算法将校验节点邻接符号节点的平均概率信息作为权重,使翻转函数更加有效,提高符号的翻转效率,进而改善译码性能。并且通过设置迭代停止准则进一步加快算法的收敛速度。仿真结果显示,在加性高斯白噪声信道下,误符号率为10-5时,相比WSF算法、NSCWSF算法(Osc=10)和NSCWSF算法(Osc=6),APSCWSF算法(Osc=10)分别获得约0.68 d B、0.83 d B和0.96 d B的增益。同时,APSCWSF算法(Osc=6)的平均迭代次数也分别降低78.60%~79.32%、74.89%~75.95%和67.20%~70.80%。
In order to improve the performance of the security-reliability tradeoff (SRT), a joint jammer and user scheduling (JJUS) scheme is proposed. First, a user with the maximal instantaneous channel capacity is select...
详细信息
In order to improve the performance of the security-reliability tradeoff (SRT), a joint jammer and user scheduling (JJUS) scheme is proposed. First, a user with the maximal instantaneous channel capacity is selected to transmit its signal to the base station ( BS) in the transmission time slot. Then, when the user transmits its signal to BS, the jammer is invoked for transmitting artificial noise in order to perturb the eavesdropper’s reception. Simulation results show that increasing the number of users can enhance the SRT performance of the proposed JJUS scheme. In addition, the SRT performance of the proposed JJUS scheme is better than that of the traditional round-robin scheduling and pure user scheduling schemes. The proposed JJUS scheme can guarantee the secure transmission even in low main-to-eavesdropper ratio( MER) regions.
暂无评论