针对成本约束有向无环图DAG(directed acyclic graph)表示的网格工作流完工时间最小化问题,提出两个基于优先级规则的迭代启发算法.算法利用并行活动特征定义正向分层和逆向分层两个概念,将其分别引入最大收益规则MP(maximum profit),得到正分层最大收益规则MPTL(maximum profit with top level)和逆分层最大收益规则MPBL(maximum profit with bottom level).两规则每次迭代尽量以完工时间的最小增加换取总费用的最大降低,逐步将分层初始解构造为满足成本约束的可行解.模拟结果表明,两规则在获得较少迭代次数和运行时间的同时,能显著改进MP规则的平均性能,且MPBL优于MPTL.
为了提高推荐算法评分预测的准确度,该文在Trust Walker模型的基础上,提出了一个改进的基于信任网络和随机游走策略的评分预测模型——Referential User Walker模型。该模型通过随机游走策略,利用信任网络中的信任朋友对目标物品或与目...
详细信息
为了提高推荐算法评分预测的准确度,该文在Trust Walker模型的基础上,提出了一个改进的基于信任网络和随机游走策略的评分预测模型——Referential User Walker模型。该模型通过随机游走策略,利用信任网络中的信任朋友对目标物品或与目标物品相似的物品的评分进行评分预测,并在信任网络中找到最可信的Top N评分参考用户,同时引入信任度权重,降低了噪声数据的影响。实验结果表明,与Trust Walker模型相比,Referential User Walker模型的评分预测准确度有所提高。
暂无评论