基于本地差分隐私的图聚类工作成为近年来的一个研究热点.已有工作主要针对的是无向图,且大多利用位向量技术通过模块化聚合实现.由于噪声量与向量维度成线性关系,使得聚类质量和隐私性难以很好地兼顾.此外,针对无向图中边的有/无设计的2元扰动机制在面对有向图时,因无法对边的方向性进行处理而无法适用.针对上述问题,提出一种基于本地边差分隐私(edge local differential privacy,Edge-LDP)的有向图聚类算法DGC-LDP(directed graph clustering under LDP).具体来说,为了降低噪音量同时适用于有向图,基于直接编码方式设计了一种适用于有向星型图的动态扰动机制,通过自适应添加噪声来平衡隐私性和统计效用.在此基础上,在终端和收集者之间构建迭代机制.收集者依据终端上传的噪声数据提取节点间的相似性信息,并设计基于轮廓系数测量模型的节点聚合算法,通过迭代机制不断地优化节点聚合形式形成高质量簇.理论分析和实验结果表明,所提算法在满足Edge-LDP的同时能够有效兼顾聚类精度.
本文首次提出针对属性推理攻击的有效防御方法.属性推理攻击可以揭示出用于训练公开模型的原始私有数据集中的隐私属性信息.现有研究已经针对不同的机器学习算法提出了多种属性推理攻击.这些攻击很难防御,一方面原因是训练有素的模型总是会记住训练数据集中的显性和隐性全局属性,另一方面原因在于模型提供者无法事先知道哪些属性将受到攻击从而难以有针对性地进行防御.为了解决这个问题,本文提出了一种通用的隐私保护模型训练方法,名为PPMT(Privacy Preserving Model Training).它以迭代的方式工作.在每次迭代中,PPMT构建一个代理数据集,并在该数据集而不是私有数据集上训练模型.虽然每次迭代会同时导致隐私性的提升和功能性的降低,但隐私性的提升呈快速指数级,而功能性的降低则是缓慢线性的.经过多次迭代,PPMT在模型功能性的约束下最大化全局属性的隐私性,并生成最终的模型.本文选择了两种代表性的机器学习算法和三个典型的数据集来进行实验评估PPMT所训练出模型的功能性、隐私性和鲁棒性.结果显示,使用PPMT训练出的模型,在全局属性上会以不同速度朝不同方向改变,在功能性上的平均损失为1.28%,在超参数α保密的情况下被可能攻击倒推的成功率仅有22%~33%.这说明,PPMT不仅能保护私有数据集的全局属性隐私性,而且能保证模型有足够的功能性,以及面对可能攻击的鲁棒性.
分布异构计算资源通过网络连接形成算力网络(Computing power network,CPN),其以“连”和“算”为核心.针对广分布异构性导致可行解空间巨大、强不确定性导致可行解空间易变、高约束复杂性导致可行解孤岛繁多、多目标性导致冲突目标权...
详细信息
分布异构计算资源通过网络连接形成算力网络(Computing power network,CPN),其以“连”和“算”为核心.针对广分布异构性导致可行解空间巨大、强不确定性导致可行解空间易变、高约束复杂性导致可行解孤岛繁多、多目标性导致冲突目标权衡优化难等挑战,提出一个多层次算力网络体系框架,包括参数化结构化业务管理、三阶段(计划、调度、执行)闭环调度模式、多模态资源管理三个功能.提出支持快速、高效、鲁棒的“算法+知识+数据+算力”的算力网络智慧调度框架,形式化分析可行解空间,解析调度策略关键参数,定性分析调度算法性能与效率的内在关系,详细综述调度算法类型,综述算力网络调度研究进展与发展方向.对比已有相关综述研究,展望算力网络调度未来理论和技术的难点与趋势.
暂无评论