分布异构计算资源通过网络连接形成算力网络(Computing power network,CPN),其以“连”和“算”为核心.针对广分布异构性导致可行解空间巨大、强不确定性导致可行解空间易变、高约束复杂性导致可行解孤岛繁多、多目标性导致冲突目标权...
详细信息
分布异构计算资源通过网络连接形成算力网络(Computing power network,CPN),其以“连”和“算”为核心.针对广分布异构性导致可行解空间巨大、强不确定性导致可行解空间易变、高约束复杂性导致可行解孤岛繁多、多目标性导致冲突目标权衡优化难等挑战,提出一个多层次算力网络体系框架,包括参数化结构化业务管理、三阶段(计划、调度、执行)闭环调度模式、多模态资源管理三个功能.提出支持快速、高效、鲁棒的“算法+知识+数据+算力”的算力网络智慧调度框架,形式化分析可行解空间,解析调度策略关键参数,定性分析调度算法性能与效率的内在关系,详细综述调度算法类型,综述算力网络调度研究进展与发展方向.对比已有相关综述研究,展望算力网络调度未来理论和技术的难点与趋势.
We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correl...
详细信息
We investigate the approximating capability of Markov modulated Poisson processes (MMPP) for modeling multifractal Internet traffic. The choice of MMPP is motivated by its ability to capture the variability and correlation in moderate time scales while being analytically tractable. Important statistics of traffic burstiness are described and a customized moment-based fitting procedure of MMPP to traffic traces is presented. Our methodology of doing this is to examine whether the MMPP can be used to predict the performance of a queue to which MMPP sample paths and measured traffic traces are fed for comparison respectively, in addition to the goodness-of-fit test of MMPP. Numerical results and simulations show that the fitted MMPP can approximate multifractal traffic quite well, i.e. accurately predict the queueing performance.
暂无评论