车辆和行人安全监测是城市交通监测的一项重要任务。针对雾霾等复杂恶劣天气条件下,监测采集的图像视觉效果差、噪声高、目标检测困难等问题,提出了一种双主干网络(MobileNets VGG-DCBM Network,MVNet)用于雾天交通目标检测,结构受PCCN和CBNet网络结构的启发,由改进的深度可分离卷积神经网络MobileNets和基于VGGNet构建的VGG-DCBM网络组成;采用并行方式构建双主干目标检测网络结构,以改进的MobileNets为主主干网络,VGG-DCBM为辅助主干网络,共同提取特征信息,实现不同网络间特征层信息的融合;MVNet网络结构采用并行方式获取两个不同网络提取的不同特征层信息,通过采用通道拼接的方法实现不同网络特征信息之间的融合,以获得更丰富的细节特征;在RTTS和HazePerson数据集上,平均精度均值(mean Average Precision,mAP)分别达到71.50%和89.84%;实验结果表明:在雾霾等复杂恶劣天气条件下具有较强的鲁棒性且能够准确的检测到车辆和行人,在目标检测性能上优于对比方法。
互联网目前已经发展为一个由实时视频和视频点播等内容分发服务主导的网络.传统IP网络对于视频分发类任务的支持存在组播的部署复杂且开销大,不能有效利用多路径获取内容、对移动性的支持差和难以同时满足可靠性以及低延时需求等问题.命名数据网络(named data networking,NDN)作为新型的下一代互联网体系结构,支持网络内缓存和多路径传输,而且由消费者驱动的传输模式使其天然地支持消费者端移动性.以上特点使NDN具有高效传输视频内容的潜力.首先介绍了视频传输和NDN的基础背景,然后阐述了一些利用NDN中优势实现视频传输的设计方案.通过对已有方案的总结与比较,最后指出了在NDN中传输视频所面临的挑战.
暂无评论