Real-time applications are sensitive to conditions such as transmission delay and jittering. To cut down on the influence generated by the WLAN handoff process, three parts of WLAN (wireless local area networks) han...
详细信息
Real-time applications are sensitive to conditions such as transmission delay and jittering. To cut down on the influence generated by the WLAN handoff process, three parts of WLAN (wireless local area networks) handoff: handoff triggering, access point selection and the fast handoff algorithm are investigated. A fast handoff solution totally based on the station is proposed and it is composed of three parts: a handoff triggering mechanism based on dynamic threshold adjustment; an AP selection criterion based on probe delay; a fast handoff algorithm with differentiated channel selection and a dynamic cache. The station based solution is independent with AP's collaboration and avoids any changes in the IEEE 802. l l protocol. It is robust and has very good extensibility. Through tests and evaluation in a hotspot WLAN, the solution effectively reduces handoff latency and user experience of real-time applications is enhanced.
移动视频业务应用广泛,流量占比高且持续增长.针对有限的移动网络带宽,如何合理地规划网络服务、提供优质的移动视频体验,需要客观的视频体验评估反馈网络服务提供商和视频服务运营商以改善网络利用率及传输方案.当前大多数视频服务质量评估方法都基于DPI(Deep Packet Inspection)方法获取视频播放信息以计算视频QoE(Quality of Experience).然而,为了保护用户隐私和网络安全,越来越多的视频采用HTTPS加密传输,使得传统的DPI方法无法获取码率和清晰度等QoE评估参数.因此,文中提出一种基于视频块统计特征的加密视频QoE参数识别方法(以代表性网络视频YouTube为例).首先,根据SSL/TLS协议握手过程中未加密部分识别HTTPS加密的YouTube流量.然后,根据视频流前若干个包的4种特征识别出HLS、DASH和HPD传输模式,再根据视频块统计特征建立机器学习模式识别视频块的码率和清晰度.实验结果表明该方法传输模式、码率和清晰度识别平均准确率分别达到98%、99%和98%,可以有效用于加密YouTube的QoE评估.
Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, dif...
详细信息
Based on the advantages of both Grid and peer-to-peer (P2P) networks, an overlay network in the Grid environment is constructed by P2P technologies by a modified version of the Chord protocol. In this mechanism, different nodes' accesses to different resources are determined by their contribution. Therefore, the heterogeneous resources of virtual organizations in large-scale Grid can be effectively integrated, and the key node failure as well as system bottleneck in the traditional Grid environment is eliminated. The experimental results indicate that this management mechanism can achieve better average performance in the Grid environment and maintain the P2P characteristics as well.
The design and evaluation of accelerated transmission (AT) systems in peer-to-peer networks for data transmission are introduced. Based on transfer control protocol (TCP) and peer-to-peer (P2P) substrate network...
详细信息
The design and evaluation of accelerated transmission (AT) systems in peer-to-peer networks for data transmission are introduced. Based on transfer control protocol (TCP) and peer-to-peer (P2P) substrate networks, AT can select peers of high performance quality, monitor the transfer status of each peer, dynamically adjust the transmission velocity and react to connection degradation with high accuracy and low overhead. The system performance is evaluated by simulations, and the interrelationship between network flow, bandwidth utilities and network throughput is analyzed. Owing to the collaborative operation of neighboring peers, AT accelerates the process of data transmission and the collective network performance is much more satisfactory.
The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clust...
详细信息
The model of energy cost in a wireless sensor network (WSN)environment is built, and the energy awareness and the wireless interference mainly due to different path loss models are studied. A special case of a clustering scheme, a twodimensional grid clustering mechanism, is adopted. Clusterheads are rotated evenly among all sensor nodes in an efficient and decentralized manner, based on the residual energy in the battery and the random backoff time. In addition to transmitting and receiving packets within the sensors' electrical and amplification circuits, extra energy is needed in the retransmission of packets due to packet collisions caused by severe interference. By analysis and mathematical derivation, which are based on planar geometry, it is shown that the total energy consumed in the network is directly related to the gridstructure in the proposed grid based clustering mechanism. The transmission range is determined by cluster size, and the path loss exponent is determined by nodal separation. The summation of overall interference is caused by all the sensors that are transmitting concurrently. By analysis and simulation, an optimal grid structure with the corresponding grid size is presented, which balances between maximizing energy conservation and minimizing overall interference in wireless sensor networks.
暂无评论