目前,代理模型辅助的进化算法是提高复杂优化问题的计算效率的一种有效手段。其中,模型管理在代理辅助进化优化中起着至关重要的作用。提出了一种基于多目标加点规则的高斯过程模型辅助社会微粒群算法(Multi-objective infill criterion based Gaussian Process model assisted Social learning particle swarm optimization,MICGP-SLPSO)。将多目标的方法引入模型管理中,提出多目标加点规则,进而发展了一种新的基于代理模型的微粒群算法优化策略。选用高斯过程构造代理模型,采用微粒群算法对所构造的代理模型进行优化,根据已知信息,将期望改进准则(EI)及统计下限最小值准则LCB作为两个目标,用来确定哪些候选解进行实际计算。将本优化策略用于基准函数测试问题和阶梯悬臂梁设计优化实例,并与国内外现有研究成果进行比较,证明了MICGP-SLPSO在有限的适应值计算次数下拥有更好的寻优性能,尤其是在高维优化问题上拥有更显著的优势。
锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,...
详细信息
锂离子电池的剩余使用寿命(remaining useful life,RUL)是电池健康状态的关键指标,对其进行预测具有重要的现实意义。该工作将模糊信息粒化(fuzzy information granulation,FIG)技术与时间序列密集编码器模型(timeseries dense encoder,TiDE)相结合,提出了一种对锂离子电池的RUL进行区间预测的模型。首先将锂离子电池容量退化时间序列通过FIG技术转化为粒子序列信息,以此得到模糊信息粒子的上下界序列。其次,分别对上下界序列使用TiDE模型进行训练预测,从而得到区间预测的结果。实验结果表明,与基于支持向量回归(support vector regression,SVR)和长短期记忆网络(long short term memory network,LSTM)的区间预测模型以及不使用狐狸优化算法(fox-inspired optimization algorithm,FOA)优化的TiDE模型相比,该工作提出的基于FIG技术结合TiDE模型与FOA的区间预测方法在锂离子电池RUL预测性能上具有更高的可靠性。
暂无评论